TAR syndrome (WP5362)

Homo sapiens

The TAR syndrome (Thrombocytopenia with Absent Radius) is a rare genetic disorder caused by a deletion on the chromosome 1 (GRCh37: chr1:145,394,955-145,807,817 according to Kirov et al. 2014 10.1016/j.biopsych.2013.07.022). The most notable symptoms are the absence of the radius bone, reduced platelet count and cardiac defects. Additionally, patients have an increased susceptibility for psychiatric disorders.

Authors

Ewoud , Javier Millán Acosta , Friederike Ehrhart , and Eric Weitz

Activity

last edited

Discuss this pathway

Check for ongoing discussions or start your own.

Cited In

Are you planning to include this pathway in your next publication? See How to Cite and add a link here to your paper once it's online.

Organisms

Homo sapiens

Communities

Annotations

Disease Ontology

disease of mental health disease

Pathway Ontology

disease pathway

Participants

Label Type Compact URI Comment
BMP Metabolite chebi:60815
DNA Metabolite chebi:16991
Collagen Metabolite chebi:3815
TBP Metabolite chebi:35019
RNA Metabolite chebi:33697
SLC34A3 GeneProduct ensembl:ENSG00000198569
RBCK1 GeneProduct ensembl:ENSG00000125826
GPR89A GeneProduct ensembl:ENSG00000117262
EGFR GeneProduct ensembl:ENSG00000146648
PDZK1IP1 GeneProduct ensembl:ENSG00000162366
AKAP10 GeneProduct ensembl:ENSG00000108599
SLK GeneProduct ensembl:ENSG00000065613
SLC22A4 GeneProduct ensembl:ENSG00000197208
FARP2 GeneProduct ensembl:ENSG00000006607
MTA1 GeneProduct ensembl:ENSG00000182979
UBE2I GeneProduct ensembl:ENSG00000103275
POLR3C GeneProduct ensembl:ENSG00000186141
TXNIP GeneProduct ensembl:ENSG00000117289
LCK GeneProduct ensembl:ENSG00000182866
ITGB1 GeneProduct ensembl:ENSG00000150093
PDZK1 GeneProduct ensembl:ENSG00000174827
SLC22A12 GeneProduct ensembl:ENSG00000197891
IFNG GeneProduct ensembl:ENSG00000111537
CLCN3 GeneProduct ensembl:ENSG00000109572
HLA-B GeneProduct ensembl:ENSG00000234745
CD160 GeneProduct ensembl:ENSG00000117281
MET GeneProduct ensembl:ENSG00000105976
ANKRD35 GeneProduct ensembl:ENSG00000198483
SUMO2 GeneProduct ensembl:ENSG00000188612
TNFRSF14 GeneProduct ensembl:ENSG00000157873
SLC9A3R1 GeneProduct ensembl:ENSG00000109062
RNF115 GeneProduct ensembl:ENSG00000121848 BCA2, ZNF364, ring finger protein 115, ZFP364, RABRING7
CXCR4 GeneProduct ensembl:ENSG00000121966
DDIT4 GeneProduct ensembl:ENSG00000168209
HJV GeneProduct ensembl:ENSG00000168509 HAEMOJUVELIN, HEMOJUVELIN, HFE2, HFE2A
CCAR2 GeneProduct ensembl:ENSG00000158941
PEX19 GeneProduct ensembl:ENSG00000162735
FLT3 GeneProduct ensembl:ENSG00000122025
DNM1 GeneProduct ensembl:ENSG00000106976
CD3 GeneProduct ensembl:ENSG00000167286
BRF1 GeneProduct ensembl:ENSG00000185024
EIF4A3 GeneProduct ensembl:ENSG00000141543
ZFHX3 GeneProduct ensembl:ENSG00000140836
STAT3 GeneProduct ensembl:ENSG00000168610
CD247 GeneProduct ensembl:ENSG00000198821
CFTR GeneProduct ensembl:ENSG00000001626
TXN GeneProduct ensembl:ENSG00000136810
MITD1 GeneProduct ensembl:ENSG00000158411
HAMP GeneProduct ensembl:ENSG00000105697 Hepcidin
Interferon Type I (α/β/δ...) GeneProduct pfam:PF00143
HLA-G GeneProduct ensembl:ENSG00000204632
HLA-C GeneProduct ensembl:ENSG00000204525
ITGA10 GeneProduct ensembl:ENSG00000143127
HDAC2 GeneProduct ensembl:ENSG00000196591
PI3K GeneProduct pfam:PF00454
MAGOH GeneProduct ensembl:ENSG00000162385
POLR3F GeneProduct ensembl:ENSG00000132664
FURIN GeneProduct ensembl:ENSG00000140564
POLR3G GeneProduct ensembl:ENSG00000113356
SIRT1 GeneProduct ensembl:ENSG00000096717
NFKB1 GeneProduct ensembl:ENSG00000109320
HLA-A GeneProduct ensembl:ENSG00000206503
GNRHR2 GeneProduct ensembl:ENSG00000211451
ANKRD34A GeneProduct ensembl:ENSG00000181039
PYM1 GeneProduct ensembl:ENSG00000170473
POLR3GL GeneProduct ensembl:ENSG00000121851
RBM8A GeneProduct ensembl:ENSG00000131795
BCL2L13 GeneProduct ensembl:ENSG00000099968
PEX11B GeneProduct ensembl:ENSG00000131779
LIX1L GeneProduct ensembl:ENSG00000152022
PIAS3 GeneProduct ensembl:ENSG00000131788
NUDT17 GeneProduct ensembl:ENSG00000186364
HLA-E GeneProduct ensembl:ENSG00000204592
HLA-F GeneProduct ensembl:ENSG00000204642
mTORC1 Protein uniprot:F5H479

References

  1. Specific inhibition of Stat3 signal transduction by PIAS3. Chung CD, Liao J, Liu B, Rao X, Jay P, Berta P, et al. Science. 1997 Dec 5;278(5344):1803–5. PubMed Europe PMC Scholia
  2. Expression of PEX11beta mediates peroxisome proliferation in the absence of extracellular stimuli. Schrader M, Reuber BE, Morrell JC, Jimenez-Sanchez G, Obie C, Stroh TA, et al. J Biol Chem. 1998 Nov 6;273(45):29607–14. PubMed Europe PMC Scholia
  3. Cutting edge: MHC class I triggering by a novel cell surface ligand costimulates proliferation of activated human T cells. Agrawal S, Marquet J, Freeman GJ, Tawab A, Bouteiller PL, Roth P, et al. J Immunol. 1999 Feb 1;162(3):1223–6. PubMed Europe PMC Scholia
  4. PEX19 binds multiple peroxisomal membrane proteins, is predominantly cytoplasmic, and is required for peroxisome membrane synthesis. Sacksteder KA, Jones JM, South ST, Li X, Liu Y, Gould SJ. J Cell Biol. 2000 Mar 6;148(5):931–44. PubMed Europe PMC Scholia
  5. Human pex19p binds peroxisomal integral membrane proteins at regions distinct from their sorting sequences. Fransen M, Wylin T, Brees C, Mannaerts GP, Van Veldhoven PP. Mol Cell Biol. 2001 Jul;21(13):4413–24. PubMed Europe PMC Scholia
  6. The PDZ-binding chloride channel ClC-3B localizes to the Golgi and associates with cystic fibrosis transmembrane conductance regulator-interacting PDZ proteins. Gentzsch M, Cui L, Mengos A, Chang XB, Chen JH, Riordan JR. J Biol Chem. 2003 Feb 21;278(8):6440–9. PubMed Europe PMC Scholia
  7. Engagement of CD160 receptor by HLA-C is a triggering mechanism used by circulating natural killer (NK) cells to mediate cytotoxicity. Le Bouteiller P, Barakonyi A, Giustiniani J, Lenfant F, Marie-Cardine A, Aguerre-Girr M, et al. Proc Natl Acad Sci U S A. 2002 Dec 24;99(26):16963–8. PubMed Europe PMC Scholia
  8. The dynamin-like GTPase DLP1 is essential for peroxisome division and is recruited to peroxisomes in part by PEX11. Li X, Gould SJ. J Biol Chem. 2003 May 9;278(19):17012–20. PubMed Europe PMC Scholia
  9. Y14 and hUpf3b form an NMD-activating complex. Gehring NH, Neu-Yilik G, Schell T, Hentze MW, Kulozik AE. Mol Cell. 2003 Apr;11(4):939–49. PubMed Europe PMC Scholia
  10. A novel mode of RBD-protein recognition in the Y14-Mago complex. Fribourg S, Gatfield D, Izaurralde E, Conti E. Nat Struct Biol. 2003 Jun;10(6):433–9. PubMed Europe PMC Scholia
  11. Large-scale identification and characterization of human genes that activate NF-kappaB and MAPK signaling pathways. Matsuda A, Suzuki Y, Honda G, Muramatsu S, Matsuzaki O, Nagano Y, et al. Oncogene. 2003 May 22;22(21):3307–18. PubMed Europe PMC Scholia
  12. PDZK1: I. a major scaffolder in brush borders of proximal tubular cells. Gisler SM, Pribanic S, Bacic D, Forrer P, Gantenbein A, Sabourin LA, et al. Kidney Int. 2003 Nov;64(5):1733–45. PubMed Europe PMC Scholia
  13. Exon-junction complex components specify distinct routes of nonsense-mediated mRNA decay with differential cofactor requirements. Gehring NH, Kunz JB, Neu-Yilik G, Breit S, Viegas MH, Hentze MW, et al. Mol Cell. 2005 Oct 7;20(1):65–75. PubMed Europe PMC Scholia
  14. Soluble HLA-G1 inhibits angiogenesis through an apoptotic pathway and by direct binding to CD160 receptor expressed by endothelial cells. Fons P, Chabot S, Cartwright JE, Lenfant F, L’Faqihi F, Giustiniani J, et al. Blood. 2006 Oct 15;108(8):2608–15. PubMed Europe PMC Scholia
  15. CD160-activating NK cell effector functions depend on the phosphatidylinositol 3-kinase recruitment. Rabot M, El Costa H, Polgar B, Marie-Cardine A, Aguerre-Girr M, Barakonyi A, et al. Int Immunol. 2007 Apr;19(4):401–9. PubMed Europe PMC Scholia
  16. Regulation of the bioavailability of thioredoxin in the lens by a specific thioredoxin-binding protein (TBP-2). Liyanage NPM, Fernando MR, Lou MF. Exp Eye Res. 2007 Aug;85(2):270–9. PubMed Europe PMC Scholia
  17. CD160 inhibits activation of human CD4+ T cells through interaction with herpesvirus entry mediator. Cai G, Anumanthan A, Brown JA, Greenfield EA, Zhu B, Freeman GJ. Nat Immunol. 2008 Feb;9(2):176–85. PubMed Europe PMC Scholia
  18. hnRNP G elicits tumor-suppressive activity in part by upregulating the expression of Txnip. Shin KH, Kim RH, Kim RH, Kang MK, Park NH. Biochem Biophys Res Commun. 2008 Aug 8;372(4):880–5. PubMed Europe PMC Scholia
  19. GPHR is a novel anion channel critical for acidification and functions of the Golgi apparatus. Maeda Y, Ide T, Koike M, Uchiyama Y, Kinoshita T. Nat Cell Biol. 2008 Oct;10(10):1135–45. PubMed Europe PMC Scholia
  20. The serine protease matriptase-2 (TMPRSS6) inhibits hepcidin activation by cleaving membrane hemojuvelin. Silvestri L, Pagani A, Nai A, De Domenico I, Kaplan J, Camaschella C. Cell Metab. 2008 Dec;8(6):502–11. PubMed Europe PMC Scholia
  21. Identification and characterization of a transmembrane isoform of CD160 (CD160-TM), a unique activating receptor selectively expressed upon human NK cell activation. Giustiniani J, Bensussan A, Marie-Cardine A. J Immunol. 2009 Jan 1;182(1):63–71. PubMed Europe PMC Scholia
  22. Exon junction complex enhances translation of spliced mRNAs at multiple steps. Lee HC, Choe J, Chi SG, Kim YK. Biochem Biophys Res Commun. 2009 Jul 3;384(3):334–40. PubMed Europe PMC Scholia
  23. RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III-transcribed RNA intermediate. Ablasser A, Bauernfeind F, Hartmann G, Latz E, Fitzgerald KA, Hornung V. Nat Immunol. 2009 Oct;10(10):1065–72. PubMed Europe PMC Scholia
  24. RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Chiu YH, Macmillan JB, Chen ZJ. Cell. 2009 Aug 7;138(3):576–91. PubMed Europe PMC Scholia
  25. Two isoforms of human RNA polymerase III with specific functions in cell growth and transformation. Haurie V, Durrieu-Gaillard S, Dumay-Odelot H, Da Silva D, Rey C, Prochazkova M, et al. Proc Natl Acad Sci U S A. 2010 Mar 2;107(9):4176–81. PubMed Europe PMC Scholia
  26. TXNIP potentiates Redd1-induced mTOR suppression through stabilization of Redd1. Jin HO, Seo SK, Kim YS, Woo SH, Lee KH, Yi JY, et al. Oncogene. 2011 Sep 1;30(35):3792–801. PubMed Europe PMC Scholia
  27. SUMOylation and SUMO-interacting motif (SIM) of metastasis tumor antigen 1 (MTA1) synergistically regulate its transcriptional repressor function. Cong L, Pakala SB, Ohshiro K, Li DQ, Kumar R. J Biol Chem. 2011 Dec 23;286(51):43793–808. PubMed Europe PMC Scholia
  28. Proteins associated with the exon junction complex also control the alternative splicing of apoptotic regulators. Michelle L, Cloutier A, Toutant J, Shkreta L, Thibault P, Durand M, et al. Mol Cell Biol. 2012 Mar;32(5):954–67. PubMed Europe PMC Scholia
  29. The E3 ubiquitin ligases RNF126 and Rabring7 regulate endosomal sorting of the epidermal growth factor receptor. Smith CJ, Berry DM, McGlade CJ. J Cell Sci. 2013 Mar 15;126(Pt 6):1366–80. PubMed Europe PMC Scholia
  30. Characterization of nuclear localization and SUMOylation of the ATBF1 transcription factor in epithelial cells. Sun X, Li J, Dong FN, Dong JT. PLoS One. 2014 Mar 20;9(3):e92746. PubMed Europe PMC Scholia
  31. CD160-associated CD8 T-cell functional impairment is independent of PD-1 expression. Viganò S, Banga R, Bellanger F, Pellaton C, Farina A, Comte D, et al. PLoS Pathog. 2014 Sep 25;10(9):e1004380. PubMed Europe PMC Scholia
  32. Modification of DBC1 by SUMO2/3 is crucial for p53-mediated apoptosis in response to DNA damage. Park JH, Lee SW, Yang SW, Yoo HM, Park JM, Seong MW, et al. Nat Commun. 2014 Nov 18;5:5483. PubMed Europe PMC Scholia
  33. Novel roles for LIX1L in promoting cancer cell proliferation through ROS1-mediated LIX1L phosphorylation. Nakamura S, Kahyo T, Tao H, Shibata K, Kurabe N, Yamada H, et al. Sci Rep. 2015 Aug 27;5:13474. PubMed Europe PMC Scholia
  34. An Atomic Structure of the Human Spliceosome. Zhang X, Yan C, Hang J, Finci LI, Lei J, Shi Y. Cell. 2017 May 18;169(5):918-929.e14. PubMed Europe PMC Scholia
  35. Structure of a human catalytic step I spliceosome. Zhan X, Yan C, Zhang X, Lei J, Shi Y. Science. 2018 Feb 2;359(6375):537–45. PubMed Europe PMC Scholia
  36. A structural perspective of human RNA polymerase III. Wang Q, Lei M, Wu J. RNA Biol. 2022;19(1):246–55. PubMed Europe PMC Scholia
  37. The E3 ligase RBCK1 reduces the sensitivity of ccRCC to sunitinib through the ANKRD35-MITD1-ANXA1 axis. Wang Y, Peng M, Zhong Y, Xiong W, Zhu L, Jin X. Oncogene. 2023 Mar;42(13):952–66. PubMed Europe PMC Scholia