10q11.21q11.23 copy number variation syndrome (WP5352)

Homo sapiens

10q11.21q11.23 copy number variation (CNV) syndrome is a rare genetic disorder caused by a deletion or duplication of genetic material on chromosome 10. The exact genetic location chr10:49,390,199-51,058,796 (GRCh37) was taken from Kirov et al. 2014 and literature cited there.

Authors

Julivana , Friederike Ehrhart , Egon Willighagen , Alex Pico , and Eric Weitz

Activity

last edited

Discuss this pathway

Check for ongoing discussions or start your own.

Cited In

Are you planning to include this pathway in your next publication? See How to Cite and add a link here to your paper once it's online.

Organisms

Homo sapiens

Communities

Diseases Rare Diseases

Annotations

Pathway Ontology

disease pathway

Participants

Label Type Compact URI Comment
Acetylcholine Metabolite chebi:15355
Phosphatidylinositol 3,4-bisphosphate Metabolite pubchem.compound:643960
CoA Metabolite chebi:57287
Acetyl CoA Metabolite hmdb:HMDB0247926
CO2 Metabolite chebi:16526
Choline Metabolite chebi:15354
Serotonin Metabolite chebi:350546
H+ Metabolite chebi:15378
(R)-N6-(S8-succinyldihydrolipoyl)-L-lysine residue Metabolite chebi:83120
2-oxoglutarate Metabolite chebi:16810
(R)-N6-lipoyl-L-lysine residue Metabolite chebi:83099
H2O Metabolite chebi:15377
ADP-D-ribose Metabolite chebi:57967
poly[(1''→2')-ADP-α-D-ribose] Metabolite chebi:142512
poly[(1''→2')-ADP-α-D-ribose] Metabolite chebi:16923
Acetylcholine Metabolite chebi:15355
Serotonin Metabolite chebi:350546
Acetylcholine Metabolite chebi:15355
MIR4294 GeneProduct ensembl:ENSG00000264800
UVSSA GeneProduct ensembl:ENSG00000163945 KIAA1530
FAM170B GeneProduct ensembl:ENSG00000172538
ITCH GeneProduct ensembl:ENSG00000078747
SIRT1 GeneProduct ensembl:ENSG00000096717
NOG GeneProduct ensembl:ENSG00000183691
HSF1 GeneProduct ensembl:ENSG00000185122
MEN1 GeneProduct ensembl:ENSG00000133895
BCL2 GeneProduct ensembl:ENSG00000171791
SMAD1 GeneProduct ensembl:ENSG00000170365
SMARCA5 GeneProduct ensembl:ENSG00000153147
LRRC18 GeneProduct ensembl:ENSG00000165383
MYO1C GeneProduct ensembl:ENSG00000197879
MAPK8 GeneProduct ensembl:ENSG00000107643 JNK1
BAZ1B GeneProduct ensembl:ENSG00000009954
RGMB GeneProduct ensembl:ENSG00000174136
KDM4D GeneProduct ensembl:ENSG00000186280
RIF1 GeneProduct ensembl:ENSG00000080345
GDF5 GeneProduct ensembl:ENSG00000125965
NEO1 GeneProduct ensembl:ENSG00000067141
MYBBP1A GeneProduct ensembl:ENSG00000132382
BMPR1A GeneProduct ensembl:ENSG00000107779
PCNA GeneProduct ensembl:ENSG00000132646
SF3B1 GeneProduct ensembl:ENSG00000115524
EIF4ENIF1 GeneProduct ensembl:ENSG00000184708
ARHGAP22 GeneProduct ensembl:ENSG00000128805
SMARCC2 GeneProduct ensembl:ENSG00000139613
DDX21 GeneProduct ensembl:ENSG00000165732
C10orf53 GeneProduct ensembl:ENSG00000178645
WDFY4 GeneProduct ensembl:ENSG00000128815
OGDHL GeneProduct ensembl:ENSG00000197444
CLOCK GeneProduct ensembl:ENSG00000134852
NLRP3 GeneProduct ensembl:ENSG00000162711
PARG GeneProduct ensembl:ENSG00000227345
C10orf128 GeneProduct ensembl:ENSG00000204161 TMEM273
ERCC5 GeneProduct ensembl:ENSG00000134899
C10orf71 GeneProduct ensembl:ENSG00000177354 CEFIP
ARNTL GeneProduct ensembl:ENSG00000133794
DEK GeneProduct ensembl:ENSG00000124795
ERCC6 GeneProduct ensembl:ENSG00000225830
SMAD5 GeneProduct ensembl:ENSG00000113658
ELOA GeneProduct ensembl:ENSG00000011007
ERCC8 GeneProduct ensembl:ENSG00000049167
JUND GeneProduct ensembl:ENSG00000130522
DLST GeneProduct ensembl:ENSG00000119689
CHAT GeneProduct ensembl:ENSG00000070748
SLC18A3 GeneProduct ensembl:ENSG00000187714
SIRT6 GeneProduct ensembl:ENSG00000077463
CDH1 GeneProduct ensembl:ENSG00000039068
CUL5 GeneProduct ensembl:ENSG00000166266
VSTM4 GeneProduct ensembl:ENSG00000165633
HSF4 GeneProduct ensembl:ENSG00000102878
FRMPD2 GeneProduct ensembl:ENSG00000170324
BMP2 GeneProduct ensembl:ENSG00000125845
BMPR1B GeneProduct ensembl:ENSG00000138696
DRGX GeneProduct ensembl:ENSG00000165606
SMAD9 GeneProduct ensembl:ENSG00000120693
SMARCB1 GeneProduct ensembl:ENSG00000099956
ELK1 GeneProduct ensembl:ENSG00000126767
ATF2 GeneProduct ensembl:ENSG00000115966
DLD GeneProduct ensembl:ENSG00000091140
ERCC6 GeneProduct ensembl:ENSG00000225830
OGDHL GeneProduct ensembl:ENSG00000197444

References

  1. Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. Raingeaud J, Gupta S, Rogers JS, Dickens M, Han J, Ulevitch RJ, et al. J Biol Chem. 1995 Mar 31;270(13):7420–6. PubMed Europe PMC Scholia
  2. Active transport of acetylcholine by the human vesicular acetylcholine transporter. Varoqui H, Erickson JD. J Biol Chem. 1996 Nov 1;271(44):27229–32. PubMed Europe PMC Scholia
  3. c-Jun NH2-terminal kinase targeting and phosphorylation of heat shock factor-1 suppress its transcriptional activity. Dai R, Frejtag W, He B, Zhang Y, Mivechi NF. J Biol Chem. 2000 Jun 16;275(24):18210–8. PubMed Europe PMC Scholia
  4. Molecular recognition of BMP-2 and BMP receptor IA. Keller S, Nickel J, Zhang JL, Sebald W, Mueller TD. Nat Struct Mol Biol. 2004 May;11(5):481–8. PubMed Europe PMC Scholia
  5. Recognition of RNA polymerase II and transcription bubbles by XPG, CSB, and TFIIH: insights for transcription-coupled repair and Cockayne Syndrome. Sarker AH, Tsutakawa SE, Kostek S, Ng C, Shin DS, Peris M, et al. Mol Cell. 2005 Oct 28;20(2):187–98. PubMed Europe PMC Scholia
  6. Association and regulation of heat shock transcription factor 4b with both extracellular signal-regulated kinase mitogen-activated protein kinase and dual-specificity tyrosine phosphatase DUSP26. Hu Y, Mivechi NF. Mol Cell Biol. 2006 Apr;26(8):3282–94. PubMed Europe PMC Scholia
  7. The WSTF-SNF2h chromatin remodeling complex interacts with several nuclear proteins in transcription. Cavellán E, Asp P, Percipalle P, Farrants AKO. J Biol Chem. 2006 Jun 16;281(24):16264–71. PubMed Europe PMC Scholia
  8. CSA-dependent degradation of CSB by the ubiquitin-proteasome pathway establishes a link between complementation factors of the Cockayne syndrome. Groisman R, Kuraoka I, Chevallier O, Gaye N, Magnaldo T, Tanaka K, et al. Genes Dev. 2006 Jun 1;20(11):1429–34. PubMed Europe PMC Scholia
  9. Substrate binding and catalytic mechanism of human choline acetyltransferase. Kim AR, Rylett RJ, Shilton BH. Biochemistry. 2006 Dec 12;45(49):14621–31. PubMed Europe PMC Scholia
  10. Rev7/MAD2B links c-Jun N-terminal protein kinase pathway signaling to activation of the transcription factor Elk-1. Zhang L, Yang SH, Sharrocks AD. Mol Cell Biol. 2007 Apr;27(8):2861–9. PubMed Europe PMC Scholia
  11. Neogenin interacts with hemojuvelin through its two membrane-proximal fibronectin type III domains. Yang F, West AP Jr, Allendorph GP, Choe S, Bjorkman PJ. Biochemistry. 2008 Apr 8;47(14):4237–45. PubMed Europe PMC Scholia
  12. JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Wei Y, Pattingre S, Sinha S, Bassik M, Levine B. Mol Cell. 2008 Jun 20;30(6):678–88. PubMed Europe PMC Scholia
  13. Novel isoenzyme of 2-oxoglutarate dehydrogenase is identified in brain, but not in heart. Bunik V, Kaehne T, Degtyarev D, Shcherbakova T, Reiser G. FEBS J. 2008 Oct;275(20):4990–5006. PubMed Europe PMC Scholia
  14. Repulsive guidance molecule b inhibits neurite growth and is increased after spinal cord injury. Liu X, Hashimoto M, Horii H, Yamaguchi A, Naito K, Yamashita T. Biochem Biophys Res Commun. 2009 May 15;382(4):795–800. PubMed Europe PMC Scholia
  15. PDZ-domain-directed basolateral targeting of the peripheral membrane protein FRMPD2 in epithelial cells. Stenzel N, Fetzer CP, Heumann R, Erdmann KS. J Cell Sci. 2009 Sep 15;122(Pt 18):3374–84. PubMed Europe PMC Scholia
  16. JNK1 phosphorylates SIRT1 and promotes its enzymatic activity. Nasrin N, Kaushik VK, Fortier E, Wall D, Pearson KJ, de Cabo R, et al. PLoS One. 2009 Dec 22;4(12):e8414. PubMed Europe PMC Scholia
  17. Possible important pair of acidic residues in vesicular acetylcholine transporter. Khare P, Ojeda AM, Chandrasekaran A, Parsons SM. Biochemistry. 2010 Apr 13;49(14):3049–59. PubMed Europe PMC Scholia
  18. PARG is recruited to DNA damage sites through poly(ADP-ribose)- and PCNA-dependent mechanisms. Mortusewicz O, Fouquerel E, Amé JC, Leonhardt H, Schreiber V. Nucleic Acids Res. 2011 Jul;39(12):5045–56. PubMed Europe PMC Scholia
  19. The structure and catalytic mechanism of a poly(ADP-ribose) glycohydrolase. Slade D, Dunstan MS, Barkauskaite E, Weston R, Lafite P, Dixon N, et al. Nature. 2011 Sep 4;477(7366):616–20. PubMed Europe PMC Scholia
  20. New insights into the molecular mechanism of multiple synostoses syndrome (SYNS): mutation within the GDF5 knuckle epitope causes noggin-resistance. Schwaerzer GK, Hiepen C, Schrewe H, Nickel J, Ploeger F, Sebald W, et al. J Bone Miner Res. 2012 Feb;27(2):429–42. PubMed Europe PMC Scholia
  21. The same pocket in menin binds both MLL and JUND but has opposite effects on transcription. Huang J, Gurung B, Wan B, Matkar S, Veniaminova NA, Wan K, et al. Nature. 2012 Feb 12;482(7386):542–6. PubMed Europe PMC Scholia
  22. JNK regulates the photic response of the mammalian circadian clock. Yoshitane H, Honma S, Imamura K, Nakajima H, Nishide S ya, Ono D, et al. EMBO Rep. 2012 May 1;13(5):455–61. PubMed Europe PMC Scholia
  23. Mutations in UVSSA cause UV-sensitive syndrome and destabilize ERCC6 in transcription-coupled DNA repair. Zhang X, Horibata K, Saijo M, Ishigami C, Ukai A, Kanno S ichiro, et al. Nat Genet. 2012 May;44(5):593–7. PubMed Europe PMC Scholia
  24. Phosphorylation of the eukaryotic translation initiation factor 4E-transporter (4E-T) by c-Jun N-terminal kinase promotes stress-dependent P-body assembly. Cargnello M, Tcherkezian J, Dorn JF, Huttlin EL, Maddox PS, Gygi SP, et al. Mol Cell Biol. 2012 Nov;32(22):4572–84. PubMed Europe PMC Scholia
  25. Poly (ADP-ribose) glycohydrolase regulates retinoic acid receptor-mediated gene expression. Le May N, Iltis I, Amé JC, Zhovmer A, Biard D, Egly JM, et al. Mol Cell. 2012 Dec 14;48(5):785–98. PubMed Europe PMC Scholia
  26. OGDHL is a modifier of AKT-dependent signaling and NF-κB function. Sen T, Sen N, Noordhuis MG, Ravi R, Wu TC, Ha PK, et al. PLoS One. 2012;7(11):e48770. PubMed Europe PMC Scholia
  27. Structure of the repulsive guidance molecule (RGM)-neogenin signaling hub. Bell CH, Healey E, van Erp S, Bishop B, Tang C, Gilbert RJC, et al. Science. 2013 Jul 5;341(6141):77–80. PubMed Europe PMC Scholia
  28. A GDF5 point mutation strikes twice--causing BDA1 and SYNS2. Degenkolbe E, König J, Zimmer J, Walther M, Reißner C, Nickel J, et al. PLoS Genet. 2013;9(10):e1003846. PubMed Europe PMC Scholia
  29. The cockayne syndrome B protein is essential for neuronal differentiation and neuritogenesis. Ciaffardini F, Nicolai S, Caputo M, Canu G, Paccosi E, Costantino M, et al. Cell Death Dis. 2014 May 29;5(5):e1268. PubMed Europe PMC Scholia
  30. CBP and p300 acetylate PCNA to link its degradation with nucleotide excision repair synthesis. Cazzalini O, Sommatis S, Tillhon M, Dutto I, Bachi A, Rapp A, et al. Nucleic Acids Res. 2014 Jul;42(13):8433–48. PubMed Europe PMC Scholia
  31. Molecular analysis of two novel missense mutations in the GDF5 proregion that reduce protein activity and are associated with brachydactyly type C. Stange K, Thieme T, Hertel K, Kuhfahl S, Janecke AR, Piza-Katzer H, et al. J Mol Biol. 2014 Sep 23;426(19):3221–31. PubMed Europe PMC Scholia
  32. Cockayne syndrome group B protein regulates DNA double-strand break repair and checkpoint activation. Batenburg NL, Thompson EL, Hendrickson EA, Zhu XD. EMBO J. 2015 May 12;34(10):1399–416. PubMed Europe PMC Scholia
  33. Repulsive guidance molecule is a structural bridge between neogenin and bone morphogenetic protein. Healey EG, Bishop B, Elegheert J, Bell CH, Padilla-Parra S, Siebold C. Nat Struct Mol Biol. 2015 Jun;22(6):458–65. PubMed Europe PMC Scholia
  34. The C-terminal Region and SUMOylation of Cockayne Syndrome Group B Protein Play Critical Roles in Transcription-coupled Nucleotide Excision Repair. Sin Y, Tanaka K, Saijo M. J Biol Chem. 2016 Jan 15;291(3):1387–97. PubMed Europe PMC Scholia
  35. JNK Phosphorylates SIRT6 to Stimulate DNA Double-Strand Break Repair in Response to Oxidative Stress by Recruiting PARP1 to DNA Breaks. Van Meter M, Simon M, Tombline G, May A, Morello TD, Hubbard BP, et al. Cell Rep. 2016 Sep 6;16(10):2641–50. PubMed Europe PMC Scholia
  36. Cockayne syndrome B protein regulates recruitment of the Elongin A ubiquitin ligase to sites of DNA damage. Weems JC, Slaughter BD, Unruh JR, Boeing S, Hall SM, McLaird MB, et al. J Biol Chem. 2017 Apr 21;292(16):6431–7. PubMed Europe PMC Scholia
  37. NLRP3 Phosphorylation Is an Essential Priming Event for Inflammasome Activation. Song N, Liu ZS, Xue W, Bai ZF, Wang QY, Dai J, et al. Mol Cell. 2017 Oct 5;68(1):185-197.e6. PubMed Europe PMC Scholia
  38. ATM and CDK2 control chromatin remodeler CSB to inhibit RIF1 in DSB repair pathway choice. Batenburg NL, Walker JR, Noordermeer SM, Moatti N, Durocher D, Zhu XD. Nat Commun. 2017 Dec 4;8(1):1921. PubMed Europe PMC Scholia
  39. WDFY4 is required for cross-presentation in response to viral and tumor antigens. Theisen DJ, Davidson JT 4th, Briseño CG, Gargaro M, Lauron EJ, Wang Q, et al. Science. 2018 Nov 9;362(6415):694–9. PubMed Europe PMC Scholia
  40. A Novel Oxoglutarate Dehydrogenase-Like Mediated miR-214/TWIST1 Negative Feedback Loop Inhibits Pancreatic Cancer Growth and Metastasis. Liu Y, Meng F, Wang J, Liu M, Yang G, Song R, et al. Clin Cancer Res. 2019 Sep 1;25(17):5407–21. PubMed Europe PMC Scholia
  41. Repulsive guidance molecules lock growth differentiation factor 5 in an inhibitory complex. Malinauskas T, Peer TV, Bishop B, Mueller TD, Siebold C. Proc Natl Acad Sci U S A. 2020 Jul 7;117(27):15620–31. PubMed Europe PMC Scholia
  42. Deficiency in WDFY4 reduces the number of CD8+ T cells via reactive oxygen species-induced apoptosis. Li Y, Li J, Yuan Q, Bian X, Long F, Duan R, et al. Mol Immunol. 2021 Nov;139:131–8. PubMed Europe PMC Scholia