FOXP3 in COVID-19 (WP5063)

Homo sapiens

FOXP3 in Covid-19

Authors

Ilja De Wolf , Friederike Ehrhart , and Eric Weitz

Activity

last edited

Discuss this pathway

Check for ongoing discussions or start your own.

Cited In

Are you planning to include this pathway in your next publication? See How to Cite and add a link here to your paper once it's online.

Organisms

Homo sapiens

Communities

COVID-19

Annotations

Pathway Ontology

disease pathway

Disease Ontology

COVID-19

Cell Type Ontology

T cell

Participants

Label Type Compact URI Comment
IL6ST GeneProduct hgnc.symbol:IL6ST
IL6R GeneProduct hgnc.symbol:IL6R
IL2RB GeneProduct hgnc.symbol:IL2RB
FOXP3 GeneProduct ensembl:ENSG00000049768
IL2RA GeneProduct hgnc.symbol:IL2RA
IL6 GeneProduct hgnc.symbol:IL6
STAT3 GeneProduct hgnc.symbol:STAT3
IL7R GeneProduct hgnc.symbol:IL7R
IL2RG GeneProduct hgnc.symbol:IL2RG
IL2 GeneProduct hgnc.symbol:IL2
STAT5A GeneProduct ensembl:ENSG00000126561
STAT5B GeneProduct ensembl:ENSG00000173757
IL2 GeneProduct hgnc.symbol:IL2
IL7R GeneProduct hgnc.symbol:IL7R
IL2RB GeneProduct hgnc.symbol:IL2RB
IL2RA GeneProduct hgnc.symbol:IL2RA
IL2RG GeneProduct hgnc.symbol:IL2RG
FOXP3 GeneProduct ensembl:ENSG00000049768
STAT3 GeneProduct hgnc.symbol:STAT3
STAT5A GeneProduct ensembl:ENSG00000126561
STAT5B GeneProduct ensembl:ENSG00000173757
IL6ST GeneProduct hgnc.symbol:IL6ST
IL6R GeneProduct hgnc.symbol:IL6R
IL6 GeneProduct hgnc.symbol:IL6
CD86 Protein uniprot:P42081
CD28 Protein uniprot:P10747
CD80 Protein uniprot:P33681
MHC-II beta Protein pfam:PF00969
FOXP3 Protein uniprot:B7ZLG1
FOXP3 Protein uniprot:B7ZLG1

References

  1. Structure and function of the interleukin 2 receptor: affinity conversion model. Shimizu A, Kondo S, Sabe H, Ishida N, Honjo T. Immunol Rev. 1986 Aug;92:103–20. PubMed Europe PMC Scholia
  2. Control of regulatory T cell development by the transcription factor Foxp3. Hori S, Nomura T, Sakaguchi S. Science. 2003 Feb 14;299(5609):1057–61. PubMed Europe PMC Scholia
  3. CD28 induces immunostimulatory signals in dendritic cells via CD80 and CD86. Orabona C, Grohmann U, Belladonna ML, Fallarino F, Vacca C, Bianchi R, et al. Nat Immunol. 2004 Nov;5(11):1134–42. PubMed Europe PMC Scholia
  4. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, et al. Nature. 2006 May 11;441(7090):235–8. PubMed Europe PMC Scholia
  5. Controversies concerning thymus-derived regulatory T cells: fundamental issues and a new perspective. Ono M, Tanaka RJ. Immunol Cell Biol. 2016 Jan;94(1):3–10. PubMed Europe PMC Scholia
  6. Critical Role of TGF-β and IL-2 Receptor Signaling in Foxp3 Induction by an Inhibitor of DNA Methylation. Freudenberg K, Lindner N, Dohnke S, Garbe AI, Schallenberg S, Kretschmer K. Front Immunol. 2018 Feb 2;9:125. PubMed Europe PMC Scholia
  7. From stability to dynamics: understanding molecular mechanisms of regulatory T cells through Foxp3 transcriptional dynamics. Bending D, Ono M. Clin Exp Immunol. 2019 Jul;197(1):14–23. PubMed Europe PMC Scholia
  8. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Lancet. 2020 Feb 15;395(10223):497–506. PubMed Europe PMC Scholia
  9. The inhibition of IL-2/IL-2R gives rise to CD8+ T cell and lymphocyte decrease through JAK1-STAT5 in critical patients with COVID-19 pneumonia. Shi H, Wang W, Yin J, Ouyang Y, Pang L, Feng Y, et al. Cell Death Dis. 2020 Jun 8;11(6):429. PubMed Europe PMC Scholia
  10. T-Cell Hyperactivation and Paralysis in Severe COVID-19 Infection Revealed by Single-Cell Analysis. Kalfaoglu B, Almeida-Santos J, Tye CA, Satou Y, Ono M. Front Immunol. 2020 Oct 8;11:589380. PubMed Europe PMC Scholia