Overlap between signal transduction pathways contributing to LMNA laminopathies (WP4879)

Homo sapiens

Laminopathies resulting form a range of LMNA mutations result in a range of tissue specific phenotypes. These rare diseases may be attributed to a symptomatic overlap characterized by the convergence of lamin A downstream signaling pathways. Lamin A is expressed in differentiating cells and thus this pathway highlights the major molecular signaling pathways misregulated during hMSC differentiation due to varying LMNA mutations.


Zoe Barois , Friederike Ehrhart , Egon Willighagen , and Eric Weitz


last edited

Discuss this pathway

Check for ongoing discussions or start your own.

Cited In

Are you planning to include this pathway in your next publication? See How to Cite and add a link here to your paper once it's online.


Homo sapiens


Rare Diseases


Disease Ontology

progeria familial partial lipodystrophy cardiomyopathy Emery-Dreifuss muscular dystrophy

Pathway Ontology

disease pathway


Label Type Compact URI Comment
C Metabolite chebi:17376
C Metabolite chebi:17376
C Metabolite chebi:17376
CREBBP GeneProduct ncbigene:1387 involved in the acetylation of MYOD1, enabling it to activate myogenic differentiation targets
acetylates histones
P/CAF GeneProduct ncbigene:8850
SMAD3 GeneProduct ncbigene:4088
Myostatin GeneProduct ncbigene:2660
WNT7B GeneProduct ncbigene:7477
P21 GeneProduct ncbigene:1026
MIRLET7B GeneProduct ncbigene:406884 targets HMGA2, decreasing it --> high amounts in mature adipocytes
JUNB GeneProduct ncbigene:3726
SMAD2 GeneProduct ncbigene:4087
NOTCH1 GeneProduct ncbigene:4851
BMP2 GeneProduct ncbigene:650
TGFB1 GeneProduct ncbigene:7040
GSK3B GeneProduct ncbigene:2932
CSNK1A1 GeneProduct ncbigene:1452
CTNNB1 GeneProduct ncbigene:1499
CSNK1A1L GeneProduct ncbigene:122011
APC GeneProduct ncbigene:324
AXIN1 GeneProduct ncbigene:8312
CTNNB1 GeneProduct ncbigene:1499
CTNNB1 GeneProduct ncbigene:1499
LEF1 GeneProduct ncbigene:51176
TCF7 GeneProduct ncbigene:6932
TCF7L2 GeneProduct ncbigene:6934
TCF7L1 GeneProduct ncbigene:83439
CTNNB1 GeneProduct ncbigene:1499
ZMPSTE24 GeneProduct ncbigene:10269
LMNA GeneProduct ncbigene:4000 Single point mutations = AD-EMD
Isoprenylcysteine carboxyl methyltransferase GeneProduct ncbigene:23463
Farnesyltransferase GeneProduct ncbigene:2339
ZMPSTE24 GeneProduct ncbigene:10269
Lamin A GeneProduct ncbigene:4000
SREBP1c GeneProduct ncbigene:6720
MIR33B GeneProduct ncbigene:693120 intronic microRNA located within the genes encoding SREBP are transcribed in concert with their host genes and function alongside them to regulate cholesterol/FA and glucose metabolism
MIR33b is highly induced upon differentiation of human preadipocytes + SREBP1
inhibition of MiR-33b enhances lipid droplet accumilation + its overexpression impaired preadipocyte proliferation + PPARG activation --> may be mediated by targeting HMGA2/CDK6+ others
overexpression of miR-33b causes reduced preadipocyte proliferation and impaired differentiation e inhibition of miR-33b enhanced lipid accumulation in differentiating adipocytes
negative regulator of adipogenesis, despite being highly upregulated during the later stages of adipocyte differentiation.
SREBP1c GeneProduct ncbigene:6720
HMGA2 GeneProduct ncbigene:8091 chromatin remodeling factor--> important role in the clonal-expansion phase of adipogenesis - may be able to control critical genes involved in cellular proliferation--> loss of HMGA2 impairs adipocyte differentiation
overexpression of miR33B caused a significant reduction in HMGA2
HMGA2 is induced during the clonal-expansion phase of adipogenesis but reduced following terminal differentiation
Type your comment here
TLE1 GeneProduct ncbigene:7088
HES1 GeneProduct ncbigene:3280
HES5 GeneProduct ncbigene:388585
Progerin GeneProduct ncbigene:4000
CTNNB1 GeneProduct ncbigene:1499
WNT10B GeneProduct ncbigene:7480 upregulation will stimulate wnt signaling to down regulate adipogenesis
PPARG GeneProduct ncbigene:5468 is down regulated following overexpression of miR33B
CEBPA GeneProduct ncbigene:1050 is down regulated following overexpression of miR33B
CEBPD GeneProduct ncbigene:1052
CEBPB GeneProduct ncbigene:1051 activated in early stages of adipogenesis --> activates transcription of PPARG and CEBPA by binding to promoter region in later stages of adipogenesis as are anti mitotic- promote terminal differentiation
Type your comment here
AGO2 GeneProduct ncbigene:27161
TARBP2 GeneProduct ncbigene:6895
DICER1 GeneProduct ncbigene:23405
MIR33B GeneProduct ncbigene:693120
MYOD1 GeneProduct ncbigene:4654
Osteoprotegerin GeneProduct ncbigene:4982 anti-osteoclastogenic cytokine
MAOB GeneProduct ncbigene:4129
NAP1L1 GeneProduct ncbigene:4673 removes acetylated histones providing an open structure of the chromatin
RB1 GeneProduct ncbigene:5925
TGFB2 GeneProduct ncbigene:7042 lmna H222P mutation - modified interaction with TGFB2 - activation of Akt/mTOR signaling
is elavated in EDMD
MAOA GeneProduct ncbigene:4128
CDK4 GeneProduct ensembl:ENSG00000135446
HDAC1 GeneProduct ncbigene:3065
MYOD1 GeneProduct ncbigene:4654
RB1 GeneProduct ncbigene:5925
Actin GeneProduct ncbigene:60
Prelamin A GeneProduct ncbigene:4000 mutated lamin A- impairements with emerin bidning - involved in its mislocalisation
lmna mutation R527H/ farnesylated laminA = MADA - increased TGFB2
Lamin A GeneProduct ncbigene:4000
RUNX2 GeneProduct ncbigene:860
LAP2A GeneProduct ncbigene:7112
Lamin A GeneProduct ncbigene:4000 mutated lamin A- impairements with emerin bidning - involved in its mislocalisation
lmna mutation R527H/ farnesylated laminA = MADA - increased TGFB2
PPARG GeneProduct ncbigene:5468 Novel F388L mutation is associated with a form of partial lipodystrophy
Lamin A GeneProduct ncbigene:4000
Lamin A GeneProduct ncbigene:4000
NOTCH NICD GeneProduct ncbigene:4851
SPP1 GeneProduct ncbigene:6696
MYOD1 GeneProduct ncbigene:4654
E2F1 GeneProduct ncbigene:1869
E2F1 GeneProduct ncbigene:1869
P/CAF GeneProduct ncbigene:8850
HDAC1 GeneProduct ncbigene:3065
RB1 GeneProduct ncbigene:5925
HDAC1 GeneProduct ncbigene:3065
E2F1 GeneProduct ncbigene:1869
Prelamin-A Protein uniprot:D6RB20
MAN1 Protein uniprot:Q9Y2U8
Prelamin-A Protein uniprot:D6RB20
Prelamin-A Protein uniprot:D6RB20
Prelamin-A Protein uniprot:D6RB20
Truncated prelamin-A Protein uniprot:D6RB20 LMNA heterozygous splicing mutation --> loss of exon 11 results in a truncated pre lamin A - removal of Carboxyl terminal motif - interaction with other proteins - disrupted function
can also result from ZMPSTE24 mutations - premature stop codon - no propper processing of lamin A - can also result from null mutations
Emerin Protein uniprot:F8WEQ1
Prelamin-A Protein uniprot:D6RB20
Cathepsin K Protein uniprot:P43235
Emerin Protein uniprot:Q5HY57 mis-localisation to the ER with lamin A mutations = no propper nuclear localisation
Type your comment here
MAN1 Protein uniprot:Q9Y2U8
Emerin Protein uniprot:Q5HY57 Q133H mutation showed no significant binding to f-actin
loss of emerin leads to dysregulation of myoD pathway
Emerin Protein uniprot:Q5HY57 Q133H mutation showed no significant binding to f-actin
loss of emerin leads to dysregulation of myoD pathway


  1. SREBP-1, a membrane-bound transcription factor released by sterol-regulated proteolysis. Wang X, Sato R, Brown MS, Hua X, Goldstein JL. Cell. 1994 Apr 8;77(1):53–62. PubMed Europe PMC Scholia
  2. beta-catenin is a target for the ubiquitin-proteasome pathway. Aberle H, Bauer A, Stappert J, Kispert A, Kemler R. EMBO J. 1997 Jul 1;16(13):3797–804. PubMed Europe PMC Scholia
  3. Regulation of E2F1 activity by acetylation. Martínez-Balbás MA, Bauer UM, Nielsen SJ, Brehm A, Kouzarides T. EMBO J. 2000 Feb 15;19(4):662–71. PubMed Europe PMC Scholia
  4. Wnt/beta-catenin signaling. Akiyama T. Cytokine Growth Factor Rev. 2000 Dec;11(4):273–82. PubMed Europe PMC Scholia
  5. Lamina-associated polypeptide 2alpha binds intranuclear A-type lamins. Dechat T, Korbei B, Vaughan OA, Vlcek S, Hutchison CJ, Foisner R. J Cell Sci. 2000 Oct;113 Pt 19:3473–84. PubMed Europe PMC Scholia
  6. A role for histone deacetylase HDAC1 in modulating the transcriptional activity of MyoD: inhibition of the myogenic program. Mal A, Sturniolo M, Schiltz RL, Ghosh MK, Harter ML. EMBO J. 2001 Apr 2;20(7):1739–53. PubMed Europe PMC Scholia
  7. Properties of lamin A mutants found in Emery-Dreifuss muscular dystrophy, cardiomyopathy and Dunnigan-type partial lipodystrophy. Ostlund C, Bonne G, Schwartz K, Worman HJ. J Cell Sci. 2001 Dec;114(Pt 24):4435–45. PubMed Europe PMC Scholia
  8. A novel interaction between lamin A and SREBP1: implications for partial lipodystrophy and other laminopathies. Lloyd DJ, Trembath RC, Shackleton S. Hum Mol Genet. 2002 Apr 1;11(7):769–77. PubMed Europe PMC Scholia
  9. CCAAT/enhancer-binding proteins: structure, function and regulation. Ramji DP, Foka P. Biochem J. 2002 Aug 1;365(Pt 3):561–75. PubMed Europe PMC Scholia
  10. Both the Smad and p38 MAPK pathways play a crucial role in Runx2 expression following induction by transforming growth factor-beta and bone morphogenetic protein. Lee KS, Hong SH, Bae SC. Oncogene. 2002 Oct 17;21(47):7156–63. PubMed Europe PMC Scholia
  11. PPARG F388L, a transactivation-deficient mutant, in familial partial lipodystrophy. Hegele RA, Cao H, Frankowski C, Mathews ST, Leff T. Diabetes. 2002 Dec;51(12):3586–90. PubMed Europe PMC Scholia
  12. Notch 1 impairs osteoblastic cell differentiation. Sciaudone M, Gazzerro E, Priest L, Delany AM, Canalis E. Endocrinology. 2003 Dec;144(12):5631–9. PubMed Europe PMC Scholia
  13. Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. Lammerding J, Schulze PC, Takahashi T, Kozlov S, Sullivan T, Kamm RD, et al. J Clin Invest. 2004 Feb;113(3):370–8. PubMed Europe PMC Scholia
  14. Effects of Wnt signaling on proliferation and differentiation of human mesenchymal stem cells. De Boer J, Wang HJ, Van Blitterswijk C. Tissue Eng. 2004;10(3–4):393–401. PubMed Europe PMC Scholia
  15. Lamin A and ZMPSTE24 (FACE-1) defects cause nuclear disorganization and identify restrictive dermopathy as a lethal neonatal laminopathy. Navarro CL, De Sandre-Giovannoli A, Bernard R, Boccaccio I, Boyer A, Geneviève D, et al. Hum Mol Genet. 2004 Oct 15;13(20):2493–503. PubMed Europe PMC Scholia
  16. Emerin caps the pointed end of actin filaments: evidence for an actin cortical network at the nuclear inner membrane. Holaska JM, Kowalski AK, Wilson KL. PLoS Biol. 2004 Sep;2(9):E231. PubMed Europe PMC Scholia
  17. A-type lamins are essential for TGF-beta1 induced PP2A to dephosphorylate transcription factors. Van Berlo JH, Voncken JW, Kubben N, Broers JLV, Duisters R, van Leeuwen REW, et al. Hum Mol Genet. 2005 Oct 1;14(19):2839–49. PubMed Europe PMC Scholia
  18. Loss of emerin at the nuclear envelope disrupts the Rb1/E2F and MyoD pathways during muscle regeneration. Melcon G, Kozlov S, Cutler DA, Sullivan T, Hernandez L, Zhao P, et al. Hum Mol Genet. 2006 Feb 15;15(4):637–51. PubMed Europe PMC Scholia
  19. Nuclear envelope dystrophies show a transcriptional fingerprint suggesting disruption of Rb-MyoD pathways in muscle regeneration. Bakay M, Wang Z, Melcon G, Schiltz L, Xuan J, Zhao P, et al. Brain. 2006 Apr;129(Pt 4):996–1013. PubMed Europe PMC Scholia
  20. The inner nuclear membrane protein emerin regulates beta-catenin activity by restricting its accumulation in the nucleus. Markiewicz E, Tilgner K, Barker N, van de Wetering M, Clevers H, Dorobek M, et al. EMBO J. 2006 Jul 26;25(14):3275–85. PubMed Europe PMC Scholia
  21. Nucleoplasmic LAP2alpha-lamin A complexes are required to maintain a proliferative state in human fibroblasts. Pekovic V, Harborth J, Broers JLV, Ramaekers FCS, van Engelen B, Lammens M, et al. J Cell Biol. 2007 Jan 15;176(2):163–72. PubMed Europe PMC Scholia
  22. Activation of MAPK pathways links LMNA mutations to cardiomyopathy in Emery-Dreifuss muscular dystrophy. Muchir A, Pavlidis P, Decostre V, Herron AJ, Arimura T, Bonne G, et al. J Clin Invest. 2007 May;117(5):1282–93. PubMed Europe PMC Scholia
  23. Lamin A-dependent misregulation of adult stem cells associated with accelerated ageing. Scaffidi P, Misteli T. Nat Cell Biol. 2008 Apr;10(4):452–9. PubMed Europe PMC Scholia
  24. A temporal switch from notch to Wnt signaling in muscle stem cells is necessary for normal adult myogenesis. Brack AS, Conboy IM, Conboy MJ, Shen J, Rando TA. Cell Stem Cell. 2008 Jan 10;2(1):50–9. PubMed Europe PMC Scholia
  25. Effect of lamin A/C knockdown on osteoblast differentiation and function. Akter R, Rivas D, Geneau G, Drissi H, Duque G. J Bone Miner Res. 2009 Feb;24(2):283–93. PubMed Europe PMC Scholia
  26. Adipogenesis and WNT signalling. Christodoulides C, Lagathu C, Sethi JK, Vidal-Puig A. Trends Endocrinol Metab. 2009 Jan;20(1):16–24. PubMed Europe PMC Scholia
  27. MicroRNA let-7 regulates 3T3-L1 adipogenesis. Sun T, Fu M, Bookout AL, Kliewer SA, Mangelsdorf DJ. Mol Endocrinol. 2009 Jun;23(6):925–31. PubMed Europe PMC Scholia
  28. The RNA-induced silencing complex: a versatile gene-silencing machine. Pratt AJ, MacRae IJ. J Biol Chem. 2009 Jul 3;284(27):17897–901. PubMed Europe PMC Scholia
  29. Accelerated features of age-related bone loss in zmpste24 metalloproteinase-deficient mice. Rivas D, Li W, Akter R, Henderson JE, Duque G. J Gerontol A Biol Sci Med Sci. 2009 Oct;64(10):1015–24. PubMed Europe PMC Scholia
  30. Laminopathies and A-type lamin-associated signalling pathways. Maraldi NM, Lattanzi G, Cenni V, Bavelloni A, Marmiroli S, Manzoli FA. Adv Enzyme Regul. 2010;50(1):248–61. PubMed Europe PMC Scholia
  31. Oxidative stress by monoamine oxidases is causally involved in myofiber damage in muscular dystrophy. Menazza S, Blaauw B, Tiepolo T, Toniolo L, Braghetta P, Spolaore B, et al. Hum Mol Genet. 2010 Nov 1;19(21):4207–15. PubMed Europe PMC Scholia
  32. Proteomic profiling of adipose tissue from Zmpste24-/- mice, a model of lipodystrophy and premature aging, reveals major changes in mitochondrial function and vimentin processing. Peinado JR, Quirós PM, Pulido MR, Mariño G, Martínez-Chantar ML, Vázquez-Martínez R, et al. Mol Cell Proteomics. 2011 Nov;10(11):M111.008094. PubMed Europe PMC Scholia
  33. Sensing actin dynamics: structural basis for G-actin-sensitive nuclear import of MAL. Hirano H, Matsuura Y. Biochem Biophys Res Commun. 2011 Oct 22;414(2):373–8. PubMed Europe PMC Scholia
  34. Keeping the LINC: the importance of nucleocytoskeletal coupling in intracellular force transmission and cellular function. Lombardi ML, Lammerding J. Biochem Soc Trans. 2011 Dec;39(6):1729–34. PubMed Europe PMC Scholia
  35. Wnt/beta-catenin signaling and small molecule inhibitors. Voronkov A, Krauss S. Curr Pharm Des. 2013;19(4):634–64. PubMed Europe PMC Scholia
  36. Lamin A/C and emerin regulate MKL1-SRF activity by modulating actin dynamics. Ho CY, Jaalouk DE, Vartiainen MK, Lammerding J. Nature. 2013 May 23;497(7450):507–11. PubMed Europe PMC Scholia
  37. An osteopontin-integrin interaction plays a critical role in directing adipogenesis and osteogenesis by mesenchymal stem cells. Chen Q, Shou P, Zhang L, Xu C, Zheng C, Han Y, et al. Stem Cells. 2014 Feb;32(2):327–37. PubMed Europe PMC Scholia
  38. Normal and aberrant splicing of LMNA. Luo YB, Mastaglia FL, Wilton SD. J Med Genet. 2014 Apr;51(4):215–23. PubMed Europe PMC Scholia
  39. Transcriptional regulation of adipocyte differentiation: a central role for CCAAT/enhancer-binding protein (C/EBP) β. Guo L, Li X, Tang QQ. J Biol Chem. 2015 Jan 9;290(2):755–61. PubMed Europe PMC Scholia
  40. Modulation of TGFbeta 2 levels by lamin A in U2-OS osteoblast-like cells: understanding the osteolytic process triggered by altered lamins. Evangelisti C, Bernasconi P, Cavalcante P, Cappelletti C, D’Apice MR, Sbraccia P, et al. Oncotarget. 2015 Apr 10;6(10):7424–37. PubMed Europe PMC Scholia
  41. SREBP-1c/MicroRNA 33b Genomic Loci Control Adipocyte Differentiation. Price NL, Holtrup B, Kwei SL, Wabitsch M, Rodeheffer M, Bianchini L, et al. Mol Cell Biol. 2016 Feb 1;36(7):1180–93. PubMed Europe PMC Scholia
  42. Emerin suppresses Notch signaling by restricting the Notch intracellular domain to the nuclear membrane. Lee B, Lee TH, Shim J. Biochim Biophys Acta Mol Cell Res. 2017 Feb;1864(2):303–13. PubMed Europe PMC Scholia
  43. Elevated TGF β2 serum levels in Emery-Dreifuss Muscular Dystrophy: Implications for myocyte and tenocyte differentiation and fibrogenic processes. Bernasconi P, Carboni N, Ricci G, Siciliano G, Politano L, Maggi L, et al. Nucleus. 2018 Jan 1;9(1):292–304. PubMed Europe PMC Scholia
  44. Deciphering Nuclear Mechanobiology in Laminopathy. Hah J, Kim DH. Cells. 2019 Mar 11;8(3):231. PubMed Europe PMC Scholia