Linoleic acid metabolism affected by SARS-CoV-2 (WP4853)

Homo sapiens

Lipid metabolism alternations that are related to infection by corona viruses. The information comes from the Yan et al. in 2019 in the bibliography, particularly Figure 5. That paper uses the HCoV-229E virus as a model. Note that that is different from the virus that causes the 2020 pandemic SARS-CoV-2. Fig 5 is in turn taken from, which is a very simplified pathway, omitting several steps. The paper mentions that after virus infection many of the metabolites in his figure are increased in concentration. Interestingly, exogenous supplement of LA or AA in HCoV-229E-infected cells significantly suppressed HCoV-229E virus replication and this also happened in MERS-CoV.


Egon Willighagen , Conroy lipids , Chris Evelo , Friederike Ehrhart , Martina Summer-Kutmon , Denise Slenter , Eric Weitz , Cedric Pluis , Lieke Van Den Bogaart , and B.P.E. Mennen


last edited

Discuss this pathway

Check for ongoing discussions or start your own.

Cited In

Are you planning to include this pathway in your next publication? See How to Cite and add a link here to your paper once it's online.


Homo sapiens




Disease Ontology

Coronavirus infectious disease severe acute respiratory syndrome

Pathway Ontology

linoleic acid metabolic pathway lipid metabolic pathway


Label Type Compact URI Comment
Omega-6 Metabolite lipidmaps:LMGP01050035
palmitic acid Metabolite lipidmaps:LMFA01010001
Arachidonic acid Metabolite lipidmaps:LMFA01030001
linoleic acid Metabolite lipidmaps:LMFA01030120
LysoPC16:0 Metabolite lipidmaps:LMGP01050113
stearic acid Metabolite wikidata:Q209685
bishomo-gamma-linolenic acid Metabolite lipidmaps:LMFA01030158
oleic acid Metabolite lipidmaps:LMFA01030002
Glycerophospholipids Metabolite chebi:37739
Omega-3 Metabolite lipidmaps:LMFA01030818
gamma-linolenic acid Metabolite lipidmaps:LMFA01030141
CoA(18:2(9Z,12Z)) Metabolite lipidmaps:LMFA07050343
CoA(18:3(6Z,9Z,12Z)) Metabolite lipidmaps:LMFA07050322
CoA(20:3(8Z,11Z,14Z)) Metabolite lipidmaps:LMFA07050278
Arachidonoyl-CoA Metabolite lipidmaps:LMFA07050288 aka CoA(20:4)
Cytosolic phospholipase A2(cPLA2) GeneProduct brenda:
Linoleoyl-CoAdesaturase GeneProduct brenda:
ACE2 GeneProduct ensembl:ENSG00000130234
ACOT2 GeneProduct ensembl:ENSG00000119673 Homology Mapping from Mus musculus to Homo sapiens: Original ID = L:171210
ELOVL2 GeneProduct ensembl:ENSG00000197977 Homology Mapping from Mus musculus to Homo sapiens: Original ID = L:54326
ELOVL5 GeneProduct ensembl:ENSG00000012660 Homology Mapping from Mus musculus to Homo sapiens: Original ID = L:68801
FADS1 GeneProduct ensembl:ENSG00000149485 Homology Mapping from Mus musculus to Homo sapiens: Original ID = L:76267
FADS2 Protein uniprot:O95864
surfaceglycoprotein S Protein uniprot:P0DTC2
surfaceglycoprotein S Protein uniprot:P0DTC2
membraneglycoprotein M Protein uniprot:P0DTC5
nucleocapsidprotein N Protein uniprot:P0DTC9
envelopeprotein E Protein uniprot:P0DTC4
surfaceglycoprotein S Protein uniprot:P0DTC2


  1. IL-1 alpha increases arachidonyl-CoA: lysophospholipid acyltransferase activity and stimulates [3H]arachidonate incorporation into phospholipids in rat mesangial cells. Nakazato Y, Sedor JR. Life Sci. 1992;50(26):2075–82. PubMed Europe PMC Scholia
  2. A mouse macrophage lipidome. Dennis EA, Deems RA, Harkewicz R, Quehenberger O, Brown HA, Milne SB, et al. J Biol Chem. 2010 Dec 17;285(51):39976–85. PubMed Europe PMC Scholia
  3. Stearic acid induces proinflammatory cytokine production partly through activation of lactate-HIF1α pathway in chondrocytes. Miao H, Chen L, Hao L, Zhang X, Chen Y, Ruan Z, et al. Sci Rep. 2015 Aug 14;5:13092. PubMed Europe PMC Scholia
  4. Inhibition of Cytosolic Phospholipase A2α Impairs an Early Step of Coronavirus Replication in Cell Culture. Müller C, Hardt M, Schwudke D, Neuman BW, Pleschka S, Ziebuhr J. J Virol. 2018 Jan 30;92(4):e01463-17. PubMed Europe PMC Scholia
  5. A potential role for integrins in host cell entry by SARS-CoV-2. Sigrist CJ, Bridge A, Le Mercier P. Antiviral Res. 2020 May;177:104759. PubMed Europe PMC Scholia
  6. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Cell. 2020 Apr 16;181(2):281-292.e6. PubMed Europe PMC Scholia
  7. From SARS and MERS CoVs to SARS-CoV-2: Moving toward more biased codon usage in viral structural and nonstructural genes. Kandeel M, Ibrahim A, Fayez M, Al-Nazawi M. J Med Virol. 2020 Jun;92(6):660–6. PubMed Europe PMC Scholia
  8. p38 MAPK inhibition: A promising therapeutic approach for COVID-19. Grimes JM, Grimes KV. J Mol Cell Cardiol. 2020 Jul;144:63–5. PubMed Europe PMC Scholia
  9. COVID-19 and the immune system. Paces J, Strizova Z, Smrz D, Cerny J. Physiol Res. 2020 Jul 16;69(3):379–88. PubMed Europe PMC Scholia
  10. ACE2: The Major Cell Entry Receptor for SARS-CoV-2. Scialo F, Daniele A, Amato F, Pastore L, Matera MG, Cazzola M, et al. Lung. 2020 Dec;198(6):867–77. PubMed Europe PMC Scholia
  11. Omega 3 Fatty Acids and COVID-19: A Comprehensive Review. Hathaway D, Pandav K, Patel M, Riva-Moscoso A, Singh BM, Patel A, et al. Infect Chemother. 2020 Dec;52(4):478–95. PubMed Europe PMC Scholia
  12. Stimulating the Resolution of Inflammation Through Omega-3 Polyunsaturated Fatty Acids in COVID-19: Rationale for the COVID-Omega-F Trial. Arnardottir H, Pawelzik SC, Öhlund Wistbacka U, Artiach G, Hofmann R, Reinholdsson I, et al. Front Physiol. 2021 Jan 11;11:624657. PubMed Europe PMC Scholia
  13. Dissecting lipid metabolism alterations in SARS-CoV-2. Casari I, Manfredi M, Metharom P, Falasca M. Prog Lipid Res. 2021 Apr;82:101092. PubMed Europe PMC Scholia
  14. Polyunsaturated ω-3 fatty acids inhibit ACE2-controlled SARS-CoV-2 binding and cellular entry. Goc A, Niedzwiecki A, Rath M. Sci Rep. 2021 Mar 4;11(1):5207. PubMed Europe PMC Scholia
  15. Molecular Mechanisms of Palmitic Acid Augmentation in COVID-19 Pathologies. Joshi C, Jadeja V, Zhou H. Int J Mol Sci. 2021 Jul 1;22(13):7127. PubMed Europe PMC Scholia