Iron uptake and transport (WP3217)

Bos taurus

The transport of iron between cells is mediated by transferrin. However, iron can also enter and leave cells not only by itself, but also in the form of heme and siderophores. When entering the cell via the main path (by transferrin endocytosis), its goal is not the (still elusive) chelated iron pool in the cytosol nor the lysosomes but the mitochondria, where heme is synthesized and iron-sulfur clusters are assembled (Kurz et al,2008, Hower et al 2009, Richardson et al 2010).Original Pathway at Reactome: http://www.reactome.org/PathwayBrowser/#DB=gk_current&FOCUS_SPECIES_ID=48887&FOCUS_PATHWAY_ID=917937

Authors

Martina Summer-Kutmon , Denise Slenter , and Egon Willighagen

Activity

last edited

Discuss this pathway

Check for ongoing discussions or start your own.

Cited In

Are you planning to include this pathway in your next publication? See How to Cite and add a link here to your paper once it's online.

Organisms

Bos taurus

Communities

Annotations

Pathway Ontology

iron transport pathway

Participants

Label Type Compact URI Comment
Ca2+ Metabolite chebi:29108
H+ Metabolite chebi:15378
H+ Metabolite chebi:15378
ATP Metabolite chebi:15422
Cl- Metabolite chebi:17996
Ca2+ Metabolite chebi:29108
Cl- Metabolite chebi:17996
H+ Metabolite chebi:15378
ADP Metabolite chebi:16761
APLs Metabolite reactome:REACT_26709
Cl- Metabolite chebi:17996
Fe2+ Metabolite chebi:18248
Cl- Metabolite chebi:17996
FeHM Metabolite chebi:36144
H+ Metabolite chebi:15378
H+ Metabolite chebi:15378
Na+ Metabolite pubchem.compound:923
Ca2+ Metabolite chebi:29108
Fe3+ [extracellularregion] Metabolite chebi:29034
Pi Metabolite chebi:18367
H+ Metabolite chebi:15378
Gly [extracellularregion] Metabolite chebi:15428
H+ Metabolite chebi:15378
Pi Metabolite chebi:18367
ADP Metabolite chebi:16761
H2O Metabolite chebi:15377
H+ Metabolite chebi:15378
K+ Metabolite chebi:29103
Ca2+ Metabolite chebi:29108
ATP Metabolite chebi:15422
H+ Metabolite chebi:15378
H+ Metabolite chebi:15378
H+ Metabolite chebi:15378
heme [plasmamembrane] Metabolite chebi:17627
Fe3+ [endosomemembrane] Metabolite chebi:29034
Ca2+ Metabolite chebi:29108
Cl- Metabolite chebi:17996
Fe3+ Metabolite chebi:29034
Fe2+ Metabolite chebi:18248
NADPH Metabolite chebi:16474
O2 Metabolite chebi:15379
Cl- Metabolite chebi:17996
Urate Metabolite chebi:17775
Ca2+ Metabolite chebi:29108
Cu2+ [extracellularregion] Metabolite chebi:29036
ADP Metabolite chebi:16761
e- Metabolite chebi:10545
H+ Metabolite chebi:15378
Cl- Metabolite chebi:17996
H+ Metabolite chebi:15378
H+ Metabolite chebi:15378
GABA [extracellularregion] Metabolite chebi:16865
Na+ Metabolite chebi:29101
Fe3+ [extracellularregion] Metabolite chebi:29034
Cu2+ Metabolite chebi:29036
NAADP Metabolite chebi:76072
ATP Metabolite chebi:15422
H+ Metabolite chebi:15378
Pi Metabolite chebi:18367
Ca2+ Metabolite chebi:29108
Cl- Metabolite chebi:17996
ADP Metabolite chebi:16761
Na+ Metabolite chebi:29101
5HT [extracellularregion] Metabolite chebi:28790
Fe3+ Metabolite chebi:29034
H+ Metabolite chebi:15378
Pi Metabolite chebi:18367
Ca2+ Metabolite chebi:29108
H2O Metabolite chebi:15377
O2 Metabolite chebi:15379
Urate Metabolite chebi:17775
HCO3- Metabolite chebi:17544
GABA [extracellularregion] Metabolite chebi:16865
Pi Metabolite chebi:18367
Ca2+ Metabolite chebi:29108
Cu2+ Metabolite chebi:29036
heme Metabolite chebi:17627
Ca2+ Metabolite chebi:29108
FeHM Metabolite chebi:36144
Pi Metabolite chebi:18367
H2O Metabolite chebi:15377
Ca2+ Metabolite chebi:29108
ATP Metabolite chebi:15422
HCO3- Metabolite chebi:17544
ATP Metabolite chebi:15422
Na+ Metabolite chebi:29101
Mg2+ [Golgimembrane] Metabolite chebi:18420
ADP Metabolite chebi:16761
Na+ Metabolite chebi:29101
PPi Metabolite chebi:29888
APLs Metabolite reactome:REACT_26259
Na+ Metabolite chebi:29101
H+ [extracellularregion] Metabolite chebi:15378
H2O Metabolite chebi:15377
ATP Metabolite chebi:15422
ADP Metabolite chebi:16761
Pi Metabolite chebi:18367
Fe3+ Metabolite chebi:29034
CO Metabolite chebi:17245
ATP Metabolite chebi:15422
Na+ Metabolite chebi:29101
heme Metabolite chebi:17627
H2O Metabolite chebi:15377
ATP Metabolite chebi:15422
H+ Metabolite chebi:15378
H+ Metabolite chebi:15378
Na+ Metabolite chebi:29101
Pi Metabolite chebi:18367
Na+ Metabolite chebi:29101
Ca2+ Metabolite chebi:29108
H+ Metabolite chebi:15378
Pi Metabolite chebi:18367
Fe3+ Metabolite chebi:29034
Na+ Metabolite chebi:29101
K+ Metabolite chebi:29103
Cl- Metabolite chebi:17996
Fe2+ Metabolite chebi:18248
H+ Metabolite chebi:15378
Na+ Metabolite chebi:29101
Na+ Metabolite chebi:29101
Ca2+ Metabolite chebi:29108
ATP Metabolite chebi:15422
H2O Metabolite chebi:15377
K+ Metabolite chebi:29103
amiloride Metabolite chebi:2639
Ca2+ Metabolite chebi:29108
H+ Metabolite chebi:15378
ADP Metabolite chebi:16761
Cl- Metabolite chebi:17996
Na+ Metabolite pubchem.compound:923
e- Metabolite chebi:10545
O2 Metabolite chebi:15379
Na+ Metabolite chebi:29101
BV Metabolite chebi:17033
H+ Metabolite chebi:15378
Cu2+ [plasmamembrane] Metabolite chebi:29036
Ca2+ Metabolite chebi:29108
H2O Metabolite chebi:15377
H2O Metabolite chebi:15377
Na+ Metabolite chebi:29101
NSAID Metabolite chebi:35475
K+ Metabolite chebi:29103
Fe3+ Metabolite chebi:29034
AMP Metabolite chebi:16027
Na+ Metabolite chebi:29101
NADP+ Metabolite chebi:18009
H2O Metabolite chebi:15377
H+ Metabolite chebi:15378
Cu2+ Metabolite chebi:29036
Fe2+ Metabolite chebi:18248
H2O Metabolite chebi:15377
H+ Metabolite chebi:15378
H+ Metabolite chebi:15378
Li+ Metabolite pubchem.compound:28486
Li+ Metabolite pubchem.compound:28486
FLVCR1 Protein ensembl:ENSBTAG00000015974 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q9Y5Y0
BSND Protein ensembl:ENSBTAG00000013241 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q8WZ55
ATP1B3 Protein ensembl:ENSBTAG00000014140 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P54709
TF Protein ensembl:ENSBTAG00000007273 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P02787
ATP6V1E1 Protein ensembl:ENSBTAG00000014238 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P36543
SLC9B2 Protein ensembl:ENSBTAG00000040088 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q86UD5
ASIC5 Protein ensembl:ENSBTAG00000044109 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q9NY37
ASIC1 Protein ensembl:ENSBTAG00000000970 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P78348
FXYD7 Protein ensembl:ENSBTAG00000018326 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P58549
GABRB2 Protein ensembl:ENSBTAG00000018585 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P47870
ATP4A Protein ensembl:ENSBTAG00000045598 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P20648
HTR3D Protein ensembl:ENSBTAG00000039011 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q70Z44
ATP6V1C2 Protein ensembl:ENSBTAG00000001927 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q8NEY4
TFRC Protein ensembl:ENSBTAG00000032719 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P02786
CLCNKA [plasmamembrane] Protein ensembl:ENSBTAG00000034674 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P51800
SCNN1G Protein ensembl:ENSBTAG00000010163 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P51170
ATP6V0D2 Protein ensembl:ENSBTAG00000021092 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q8N8Y2
SCNN1B Protein ensembl:ENSBTAG00000012290 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P51168
GABRB3 Protein ensembl:ENSBTAG00000013422 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P28472
ATP1B2 Protein ensembl:ENSBTAG00000013680 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P14415
TRDN Protein ensembl:ENSBTAG00000038849 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q13061
RYR1 Protein ensembl:ENSBTAG00000006999 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P21817
SLC11A2 Protein ensembl:ENSBTAG00000002355 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P49281
ATP6V1G3 Protein ensembl:ENSBTAG00000019890 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q96LB4
GABRA2 Protein ensembl:ENSBTAG00000011817 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P47869
ATP6V0C Protein ensembl:ENSBTAG00000026428 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P27449
TCIRG1 Protein ensembl:ENSBTAG00000000292 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q13488
ATP6V1D Protein ensembl:ENSBTAG00000016309 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q9Y5K8
ATP4B Protein ensembl:ENSBTAG00000019961 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P51164
ATP6V0E1 Protein ensembl:ENSBTAG00000015100 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:O15342
SLC17A3 Protein ensembl:ENSBTAG00000003797 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:O00476
SCNN1D Protein ensembl:ENSBTAG00000017674 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P51172
ATP2C2 Protein ensembl:ENSBTAG00000000945 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:O75185
TF Protein ensembl:ENSBTAG00000007273 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P02787
HTR3B Protein ensembl:ENSBTAG00000031330 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:O95264
RAF1 Protein ensembl:ENSBTAG00000045748 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P04049
SCNN1D Protein ensembl:ENSBTAG00000017674 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P51172
GABRA3 Protein ensembl:ENSBTAG00000006691 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P34903
RYR3 Protein ensembl:ENSBTAG00000025642 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q15413
OSTM1 Protein ensembl:ENSBTAG00000010134 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q86WC4
ATP6V0A2 Protein ensembl:ENSBTAG00000007272 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q9Y487
ARHGEF9 Protein ensembl:ENSBTAG00000012729 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:O43307
TF Protein ensembl:ENSBTAG00000007273 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P02787
TSC22D3 Protein ensembl:ENSBTAG00000045877 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q99576
GABRB1 Protein ensembl:ENSBTAG00000017837 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P18505
GABRG2 Protein ensembl:ENSBTAG00000010251 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P18507
CLCN7 Protein ensembl:ENSBTAG00000015889 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P51798
NEDD4L Protein ensembl:ENSBTAG00000005412 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q96PU5
ATP2C1 Protein ensembl:ENSBTAG00000011626 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P98194
ATP1A4 Protein ensembl:ENSBTAG00000038523 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q13733
ATP1B1 Protein ensembl:ENSBTAG00000002688 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P05026
FXYD1 Protein ensembl:ENSBTAG00000017816 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:O00168
ATP6V1H Protein ensembl:ENSBTAG00000003450 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q9UI12
ATP6V0E2 Protein ensembl:ENSBTAG00000006022 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q8NHE4
ATP7A Protein ensembl:ENSBTAG00000010018 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q04656
SLC17A3 Protein ensembl:ENSBTAG00000003797 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:O00476
ATP6V1A Protein ensembl:ENSBTAG00000002703 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P38606
STEAP3 Protein ensembl:ENSBTAG00000007111 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q658P3
GABRA4 Protein ensembl:ENSBTAG00000016645 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P48169
ATP1A1 Protein ensembl:ENSBTAG00000001246 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P05023
ATP6V1G2 Protein ensembl:ENSBTAG00000014491 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:O95670
GABRR2 Protein ensembl:ENSBTAG00000018435 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P28476
ATP6V1E2 Protein ensembl:ENSBTAG00000013734 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q96A05
CYBRD1 Protein ensembl:ENSBTAG00000007898 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q53TN4
ATP6V0D1 Protein ensembl:ENSBTAG00000014553 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P61421
SLC40A1 Protein ensembl:ENSBTAG00000010498 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q9NP59
SLC46A1 Protein ensembl:ENSBTAG00000002817 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q96NT5
GABRA6 Protein ensembl:ENSBTAG00000013262 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q16445
ACCN3 Protein ensembl:ENSBTAG00000007762 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q9UHC3
SCNN1B Protein ensembl:ENSBTAG00000012290 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P51168
CLCN3 Protein ensembl:ENSBTAG00000020130 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P51790
SGK2 Protein ensembl:ENSBTAG00000021033 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q9HBY8
FTL [cytosol] Protein ensembl:ENSBTAG00000019709 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P02792
SGK1 Protein ensembl:ENSBTAG00000004269 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:O00141
ATP6V0A4 Protein ensembl:ENSBTAG00000004263 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q9HBG4
ATP6V1B1 Protein ensembl:ENSBTAG00000010620 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P15313
FXYD6 Protein ensembl:ENSBTAG00000014354 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q9H0Q3
HTR3E Protein ensembl:ENSBTAG00000040304 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:A5X5Y0
ATP7B Protein ensembl:ENSBTAG00000010353 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P35670
GABRR1 Protein ensembl:ENSBTAG00000011672 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P24046
TFRC Protein ensembl:ENSBTAG00000032719 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P02786
ATP6V1B2 Protein ensembl:ENSBTAG00000018646 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P21281
ATP1A3 Protein ensembl:ENSBTAG00000018635 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P13637
ATP6V1G1 Protein ensembl:ENSBTAG00000000203 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:O75348
TF Protein ensembl:ENSBTAG00000007273 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P02787
SCNN1A Protein ensembl:ENSBTAG00000002631 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P37088
TF Protein ensembl:ENSBTAG00000007273 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P02787
CLCNKB [plasmamembrane] Protein ensembl:ENSBTAG00000034674 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P51801
ATP1A2 Protein ensembl:ENSBTAG00000010551 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P50993
SLC9C1 Protein ensembl:ENSBTAG00000019332 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q4G0N8
SCNN1G Protein ensembl:ENSBTAG00000010163 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P51170
CLIC2 Protein ensembl:ENSBTAG00000010948 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:O15247
GABRA1 Protein ensembl:ENSBTAG00000030286 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P14867
TFRC Protein ensembl:ENSBTAG00000032719 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P02786
ATP6V1C1 Protein ensembl:ENSBTAG00000013513 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P21283
TFRC Protein ensembl:ENSBTAG00000032719 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P02786
SLC40A1 Protein ensembl:ENSBTAG00000010498 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q9NP59
UNC79 Protein ensembl:ENSBTAG00000008017 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q9P2D8
RYR2 Protein ensembl:ENSBTAG00000022886 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q92736
GLRB Protein ensembl:ENSBTAG00000021764 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P48167
HTR3A Protein ensembl:ENSBTAG00000010791 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P46098
ASIC4 Protein ensembl:ENSBTAG00000020537 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q96FT7
FXYD3 Protein ensembl:ENSBTAG00000040005 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q14802
TF Protein ensembl:ENSBTAG00000007273 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P02787
CLCN2 Protein ensembl:ENSBTAG00000012284 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P51788
CLCN1 Protein ensembl:ENSBTAG00000009182 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P35523
SCNN1A Protein ensembl:ENSBTAG00000002631 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P37088
GABRA5 Protein ensembl:ENSBTAG00000003392 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P31644
FXYD2 Protein ensembl:ENSBTAG00000009828 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P54710
ATP6V1F [cytosol] Protein ensembl:ENSBTAG00000045497 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q16864
UNC80 Protein ensembl:ENSBTAG00000015415 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q8N2C7
ATP12A Protein ensembl:ENSBTAG00000014486 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P54707
WWP1 Protein ensembl:ENSBTAG00000015720 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q9H0M0
NALCN Protein ensembl:ENSBTAG00000037786 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q8IZF0
MCOLN1 Protein ensembl:ENSBTAG00000005592 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q9GZU1
ATP6V0B Protein ensembl:ENSBTAG00000018889 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q99437
HEPH Protein ensembl:ENSBTAG00000047416 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q9BQS7
ABCG2 Protein ensembl:ENSBTAG00000017704 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q9UNQ0
CP Protein ensembl:ENSBTAG00000012164 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P00450
ATP6V0A1 Protein ensembl:ENSBTAG00000019218 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q93050
TFRC Protein ensembl:ENSBTAG00000032719 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P02786
SLC9B2 Protein ensembl:ENSBTAG00000040088 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q86UD5

References

  1. Identification of a putative gamma-aminobutyric acid (GABA) receptor subunit rho2 cDNA and colocalization of the genes encoding rho2 (GABRR2) and rho1 (GABRR1) to human chromosome 6q14-q21 and mouse chromosome 4. Cutting GR, Curristin S, Zoghbi H, O’Hara B, Seldin MF, Uhl GR. Genomics. 1992 Apr;12(4):801–6. PubMed Europe PMC Scholia
  2. Cloning and expression of a cDNA encoding the human GABA-A receptor alpha 5 subunit. Wingrove P, Hadingham K, Wafford K, Kemp JA, Ragan CI, Whiting P. Biochem Soc Trans. 1992 Feb;20(1):18S. PubMed Europe PMC Scholia
  3. The skeletal muscle chloride channel in dominant and recessive human myotonia. Koch MC, Steinmeyer K, Lorenz C, Ricker K, Wolf F, Otto M, et al. Science. 1992 Aug 7;257(5071):797–800. PubMed Europe PMC Scholia
  4. cDNA cloning of the beta-subunit of the human gastric H,K-ATPase. Ma JY, Song YH, Sjöstrand SE, Rask L, Mårdh S. Biochem Biophys Res Commun. 1991 Oct 15;180(1):39–45. PubMed Europe PMC Scholia
  5. The GABAA receptor beta 3 subunit gene: characterization of a human cDNA from chromosome 15q11q13 and mapping to a region of conserved synteny on mouse chromosome 7. Wagstaff J, Chaillet JR, Lalande M. Genomics. 1991 Dec;11(4):1071–8. PubMed Europe PMC Scholia
  6. Cloning of the gamma-aminobutyric acid (GABA) rho 1 cDNA: a GABA receptor subunit highly expressed in the retina. Cutting GR, Lu L, O’Hara BF, Kasch LM, Montrose-Rafizadeh C, Donovan DM, et al. Proc Natl Acad Sci U S A. 1991 Apr 1;88(7):2673–7. PubMed Europe PMC Scholia
  7. Detection of multiple forms of human ceruloplasmin. A novel Mr 200,000 form. Sato M, Schilsky ML, Stockert RJ, Morell AG, Sternlieb I. J Biol Chem. 1990 Feb 15;265(5):2533–7. PubMed Europe PMC Scholia
  8. Alpha subunit variants of the human glycine receptor: primary structures, functional expression and chromosomal localization of the corresponding genes. Grenningloh G, Schmieden V, Schofield PR, Seeburg PH, Siddique T, Mohandas TK, et al. EMBO J. 1990 Mar;9(3):771–6. PubMed Europe PMC Scholia
  9. Human gastric (H+ + K+)-ATPase gene. Similarity to (Na+ + K+)-ATPase genes in exon/intron organization but difference in control region. Maeda M, Oshiman K, Tamura S, Futai M. J Biol Chem. 1990 Jun 5;265(16):9027–32. PubMed Europe PMC Scholia
  10. Molecular cloning of cDNA encoding human and rabbit forms of the Ca2+ release channel (ryanodine receptor) of skeletal muscle sarcoplasmic reticulum. Zorzato F, Fujii J, Otsu K, Phillips M, Green NM, Lai FA, et al. J Biol Chem. 1990 Feb 5;265(4):2244–56. PubMed Europe PMC Scholia
  11. Characterization and localization to human chromosome 1 of human fast-twitch skeletal muscle calsequestrin gene. Fujii J, Willard HF, MacLennan DH. Somat Cell Mol Genet. 1990 Mar;16(2):185–9. PubMed Europe PMC Scholia
  12. Primary structure of the alpha-subunit of human Na,K-ATPase deduced from cDNA sequence. Kawakami K, Ohta T, Nojima H, Nagano K. J Biochem. 1986 Aug;100(2):389–97. PubMed Europe PMC Scholia
  13. Sequence and expression of human GABAA receptor alpha 1 and beta 1 subunits. Schofield PR, Pritchett DB, Sontheimer H, Kettenmann H, Seeburg PH. FEBS Lett. 1989 Feb 27;244(2):361–4. PubMed Europe PMC Scholia
  14. Characterization of the human Na,K-ATPase alpha 2 gene and identification of intragenic restriction fragment length polymorphisms. Shull MM, Pugh DG, Lingrel JB. J Biol Chem. 1989 Oct 15;264(29):17532–43. PubMed Europe PMC Scholia
  15. Characterization of two genes for the human Na,K-ATPase beta subunit. Lane LK, Shull MM, Whitmer KR, Lingrel JB. Genomics. 1989 Oct;5(3):445–53. PubMed Europe PMC Scholia
  16. Family of human Na+, K+-ATPase genes. Structure of the gene for the catalytic subunit (alpha III-form) and its relationship with structural features of the protein. Ovchinnikov YuA, Monastyrskaya GS, Broude NE, Ushkaryov YuA, Melkov AM, Smirnov YuV, et al. FEBS Lett. 1988 Jun 6;233(1):87–94. PubMed Europe PMC Scholia
  17. Complete primary structure of a human plasma membrane Ca2+ pump. Verma AK, Filoteo AG, Stanford DR, Wieben ED, Penniston JT, Strehler EE, et al. J Biol Chem. 1988 Oct 5;263(28):14152–9. PubMed Europe PMC Scholia
  18. Isolation of a cDNA clone for the alpha subunit of the human GABA-A receptor. Garrett KM, Duman RS, Saito N, Blume AJ, Vitek MP, Tallman JF. Biochem Biophys Res Commun. 1988 Oct 31;156(2):1039–45. PubMed Europe PMC Scholia
  19. Ca2+-activated ATPase in microsomes from human liver. Spamer C, Heilmann C, Gerok W. J Biol Chem. 1987 Jun 5;262(16):7782–9. PubMed Europe PMC Scholia
  20. ATP-dependent Ca++-extrusion from human red cells. Schatzmann HJ. Experientia. 1966 Jun 15;22(6):364–5. PubMed Europe PMC Scholia
  21. Morphologic characterization of the pathway of transferrin endocytosis and recycling in human KB cells. Willingham MC, Hanover JA, Dickson RB, Pastan I. Proc Natl Acad Sci U S A. 1984 Jan;81(1):175–9. PubMed Europe PMC Scholia
  22. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. Harding C, Heuser J, Stahl P. J Cell Biol. 1983 Aug;97(2):329–39. PubMed Europe PMC Scholia
  23. Molecular cloning of human 5-hydroxytryptamine3 receptor: heterogeneity in distribution and function among species. Miyake A, Mochizuki S, Takemoto Y, Akuzawa S. Mol Pharmacol. 1995 Sep;48(3):407–16. PubMed Europe PMC Scholia
  24. Molecular cloning of the cDNA encoding human skeletal muscle triadin and its localisation to chromosome 6q22-6q23. Taske NL, Eyre HJ, O’Brien RO, Sutherland GR, Denborough MA, Foster PS. Eur J Biochem. 1995 Oct 1;233(1):258–65. PubMed Europe PMC Scholia
  25. The Wilson disease gene: spectrum of mutations and their consequences. Thomas GR, Forbes JR, Roberts EA, Walshe JM, Cox DW. Nat Genet. 1995 Feb;9(2):210–7. PubMed Europe PMC Scholia
  26. Characterization of a human and murine gene (CLCN3) sharing similarities to voltage-gated chloride channels and to a yeast integral membrane protein. Borsani G, Rugarli EI, Taglialatela M, Wong C, Ballabio A. Genomics. 1995 May 1;27(1):131–41. PubMed Europe PMC Scholia
  27. Localization and identification of Ca2+ATPases in highly purified human platelet plasma and intracellular membranes. Evidence that the monoclonal antibody PL/IM 430 recognizes the SERCA 3 Ca2+ATPase in human platelets. Bokkala S, el-Daher SS, Kakkar VV, Wuytack F, Authi KS. Biochem J. 1995 Mar 15;306 ( Pt 3)(Pt 3):837–42. PubMed Europe PMC Scholia
  28. Cloning of a putative human voltage-gated chloride channel (CIC-2) cDNA widely expressed in human tissues. Cid LP, Montrose-Rafizadeh C, Smith DI, Guggino WB, Cutting GR. Hum Mol Genet. 1995 Mar;4(3):407–13. PubMed Europe PMC Scholia
  29. Two highly homologous members of the ClC chloride channel family in both rat and human kidney. Kieferle S, Fong P, Bens M, Vandewalle A, Jentsch TJ. Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):6943–7. PubMed Europe PMC Scholia
  30. Cloning and characterization of the entire cDNA encoded by ATP1AL1--a member of the human Na,K/H,K-ATPase gene family. Grishin AV, Sverdlov VE, Kostina MB, Modyanov NN. FEBS Lett. 1994 Jul 25;349(1):144–50. PubMed Europe PMC Scholia
  31. Multimeric structure of ClC-1 chloride channel revealed by mutations in dominant myotonia congenita (Thomsen). Steinmeyer K, Lorenz C, Pusch M, Koch MC, Jentsch TJ. EMBO J. 1994 Feb 15;13(4):737–43. PubMed Europe PMC Scholia
  32. Role of the beta subunit in determining the pharmacology of human gamma-aminobutyric acid type A receptors. Hadingham KL, Wingrove PB, Wafford KA, Bain C, Kemp JA, Palmer KJ, et al. Mol Pharmacol. 1993 Dec;44(6):1211–8. PubMed Europe PMC Scholia
  33. The Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene. Bull PC, Thomas GR, Rommens JM, Forbes JR, Cox DW. Nat Genet. 1993 Dec;5(4):327–37. PubMed Europe PMC Scholia
  34. Antibodies to the human gamma 2 subunit of the gamma-aminobutyric acidA/benzodiazepine receptor. Khan ZU, Fernando LP, Escribá P, Busquets X, Mallet J, Miralles CP, et al. J Neurochem. 1993 Mar;60(3):961–71. PubMed Europe PMC Scholia
  35. Proton-sodium stoichiometry of NhaA, an electrogenic antiporter from Escherichia coli. Taglicht D, Padan E, Schuldiner S. J Biol Chem. 1993 Mar 15;268(8):5382–7. PubMed Europe PMC Scholia
  36. Cloning of cDNA sequences encoding human alpha 2 and alpha 3 gamma-aminobutyric acidA receptor subunits and characterization of the benzodiazepine pharmacology of recombinant alpha 1-, alpha 2-, alpha 3-, and alpha 5-containing human gamma-aminobutyric acidA receptors. Hadingham KL, Wingrove P, Le Bourdelles B, Palmer KJ, Ragan CI, Whiting PJ. Mol Pharmacol. 1993 Jun;43(6):970–5. PubMed Europe PMC Scholia
  37. Isolation of a candidate gene for Menkes disease that encodes a potential heavy metal binding protein. Chelly J, Tümer Z, Tønnesen T, Petterson A, Ishikawa-Brush Y, Tommerup N, et al. Nat Genet. 1993 Jan;3(1):14–9. PubMed Europe PMC Scholia
  38. Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper-transporting ATPase. Vulpe C, Levinson B, Whitney S, Packman S, Gitschier J. Nat Genet. 1993 Jan;3(1):7–13. PubMed Europe PMC Scholia
  39. Spectrum of mutations in the major human skeletal muscle chloride channel gene (CLCN1) leading to myotonia. Meyer-Kleine C, Steinmeyer K, Ricker K, Jentsch TJ, Koch MC. Am J Hum Genet. 1995 Dec;57(6):1325–34. PubMed Europe PMC Scholia
  40. Cloning, tissue distribution, and intrarenal localization of ClC chloride channels in human kidney. Takeuchi Y, Uchida S, Marumo F, Sasaki S. Kidney Int. 1995 Nov;48(5):1497–503. PubMed Europe PMC Scholia
  41. Cloning and expression of a novel human brain Na+ channel. Price MP, Snyder PM, Welsh MJ. J Biol Chem. 1996 Apr 5;271(14):7879–82. PubMed Europe PMC Scholia
  42. Cloning of cDNAs encoding the human gamma-aminobutyric acid type A receptor alpha 6 subunit and characterization of the pharmacology of alpha 6-containing receptors. Hadingham KL, Garrett EM, Wafford KA, Bain C, Heavens RP, Sirinathsinghji DJ, et al. Mol Pharmacol. 1996 Feb;49(2):253–9. PubMed Europe PMC Scholia
  43. The ferritins: molecular properties, iron storage function and cellular regulation. Harrison PM, Arosio P. Biochim Biophys Acta. 1996 Jul 31;1275(3):161–203. PubMed Europe PMC Scholia
  44. The human glycine receptor beta subunit: primary structure, functional characterisation and chromosomal localisation of the human and murine genes. Handford CA, Lynch JW, Baker E, Webb GC, Ford JH, Sutherland GR, et al. Brain Res Mol Brain Res. 1996 Jan;35(1–2):211–9. PubMed Europe PMC Scholia
  45. Expression and pharmacology of human GABAA receptors containing gamma 3 subunits. Hadingham KL, Wafford KA, Thompson SA, Palmer KJ, Whiting PJ. Eur J Pharmacol. 1995 Nov 30;291(3):301–9. PubMed Europe PMC Scholia
  46. Cloning and characterization of the human GABAA receptor alpha 4 subunit: identification of a unique diazepam-insensitive binding site. Yang W, Drewe JA, Lan NC. Eur J Pharmacol. 1995 Nov 30;291(3):319–25. PubMed Europe PMC Scholia
  47. Identification of the mammalian Na,K-ATPase 3 subunit. Malik N, Canfield VA, Beckers MC, Gros P, Levenson R. J Biol Chem. 1996 Sep 13;271(37):22754–8. PubMed Europe PMC Scholia
  48. The human cardiac muscle ryanodine receptor-calcium release channel: identification, primary structure and topological analysis. Tunwell RE, Wickenden C, Bertrand BM, Shevchenko VI, Walsh MB, Allen PD, et al. Biochem J. 1996 Sep 1;318 ( Pt 2)(Pt 2):477–87. PubMed Europe PMC Scholia
  49. Expression and synthesis of the Na,K-ATPase beta 2 subunit in human retinal pigment epithelium. Ruiz A, Bhat SP, Bok D. Gene. 1996 Oct 17;176(1–2):237–42. PubMed Europe PMC Scholia
  50. BNaC1 and BNaC2 constitute a new family of human neuronal sodium channels related to degenerins and epithelial sodium channels. García-Añoveros J, Derfler B, Neville-Golden J, Hyman BT, Corey DP. Proc Natl Acad Sci U S A. 1997 Feb 18;94(4):1459–64. PubMed Europe PMC Scholia
  51. Immunocytochemical localization of the Menkes copper transport protein (ATP7A) to the trans-Golgi network. Dierick HA, Adam AN, Escara-Wilke JF, Glover TW. Hum Mol Genet. 1997 Mar;6(3):409–16. PubMed Europe PMC Scholia
  52. Two forms of Wilson disease protein produced by alternative splicing are localized in distinct cellular compartments. Yang XL, Miura N, Kawarada Y, Terada K, Petrukhin K, Gilliam T, et al. Biochem J. 1997 Sep 15;326 ( Pt 3)(Pt 3):897–902. PubMed Europe PMC Scholia
  53. Molecular cloning and characterization of a human brain ryanodine receptor. Nakashima Y, Nishimura S, Maeda A, Barsoumian EL, Hakamata Y, Nakai J, et al. FEBS Lett. 1997 Nov 3;417(1):157–62. PubMed Europe PMC Scholia
  54. Molecular cloning of a DEG/ENaC sodium channel cDNA from human testis. Ishibashi K, Marumo F. Biochem Biophys Res Commun. 1998 Apr 17;245(2):589–93. PubMed Europe PMC Scholia
  55. Identification of the gene responsible for Best macular dystrophy. Petrukhin K, Koisti MJ, Bakall B, Li W, Xie G, Marknell T, et al. Nat Genet. 1998 Jul;19(3):241–7. PubMed Europe PMC Scholia
  56. The human glycine receptor subunit alpha3. Glra3 gene structure, chromosomal localization, and functional characterization of alternative transcripts. Nikolic Z, Laube B, Weber RG, Lichter P, Kioschis P, Poustka A, et al. J Biol Chem. 1998 Jul 31;273(31):19708–14. PubMed Europe PMC Scholia
  57. Mutations in a novel gene, VMD2, encoding a protein of unknown properties cause juvenile-onset vitelliform macular dystrophy (Best’s disease). Marquardt A, Stöhr H, Passmore LA, Krämer F, Rivera A, Weber BH. Hum Mol Genet. 1998 Sep;7(9):1517–25. PubMed Europe PMC Scholia
  58. Amiloride-sensitive Na channels. Horisberger JD. Curr Opin Cell Biol. 1998 Aug;10(4):443–9. PubMed Europe PMC Scholia
  59. Identification, functional expression and chromosomal localisation of a sustained human proton-gated cation channel. de Weille JR, Bassilana F, Lazdunski M, Waldmann R. FEBS Lett. 1998 Aug 21;433(3):257–60. PubMed Europe PMC Scholia
  60. The 5-HT3B subunit is a major determinant of serotonin-receptor function. Davies PA, Pistis M, Hanna MC, Peters JA, Lambert JJ, Hales TG, et al. Nature. 1999 Jan 28;397(6717):359–63. PubMed Europe PMC Scholia
  61. Defective copper-induced trafficking and localization of the Menkes protein in patients with mild and copper-treated classical Menkes disease. Ambrosini L, Mercer JF. Hum Mol Genet. 1999 Aug;8(8):1547–55. PubMed Europe PMC Scholia
  62. The Menkes protein (ATP7A; MNK) cycles via the plasma membrane both in basal and elevated extracellular copper using a C-terminal di-leucine endocytic signal. Petris MJ, Mercer JF. Hum Mol Genet. 1999 Oct;8(11):2107–15. PubMed Europe PMC Scholia
  63. Genetic linkage and radiation hybrid mapping of the three human GABA(C) receptor rho subunit genes: GABRR1, GABRR2 and GABRR3. Bailey ME, Albrecht BE, Johnson KJ, Darlison MG. Biochim Biophys Acta. 1999 Oct 28;1447(2–3):307–12. PubMed Europe PMC Scholia
  64. Identification of an acid-activated Cl(-) channel from human skeletal muscles. Kawasaki M, Fukuma T, Yamauchi K, Sakamoto H, Marumo F, Sasaki S. Am J Physiol. 1999 Nov;277(5):C948-54. PubMed Europe PMC Scholia
  65. Mutations in ATP2C1, encoding a calcium pump, cause Hailey-Hailey disease. Hu Z, Bonifas JM, Beech J, Bench G, Shigihara T, Ogawa H, et al. Nat Genet. 2000 Jan;24(1):61–5. PubMed Europe PMC Scholia
  66. Nramp2 expression is associated with pH-dependent iron uptake across the apical membrane of human intestinal Caco-2 cells. Tandy S, Williams M, Leggett A, Lopez-Jimenez M, Dedes M, Ramesh B, et al. J Biol Chem. 2000 Jan 14;275(2):1023–9. PubMed Europe PMC Scholia
  67. Human Nedd4 interacts with the human epithelial Na+ channel: WW3 but not WW1 binds to Na+-channel subunits. Farr TJ, Coddington-Lawson SJ, Snyder PM, McDonald FJ. Biochem J. 2000 Feb 1;345 Pt 3(Pt 3):503–9. PubMed Europe PMC Scholia
  68. Regulation of the epithelial Na+ channel by Nedd4 and ubiquitination. Staub O, Abriel H, Plant P, Ishikawa T, Kanelis V, Saleki R, et al. Kidney Int. 2000 Mar;57(3):809–15. PubMed Europe PMC Scholia
  69. Hailey-Hailey disease is caused by mutations in ATP2C1 encoding a novel Ca(2+) pump. Sudbrak R, Brown J, Dobson-Stone C, Carter S, Ramser J, White J, et al. Hum Mol Genet. 2000 Apr 12;9(7):1131–40. PubMed Europe PMC Scholia
  70. Molecular cloning, functional expression and chromosomal localization of an amiloride-sensitive Na(+) channel from human small intestine. Schaefer L, Sakai H, Mattei M, Lazdunski M, Lingueglia E. FEBS Lett. 2000 Apr 14;471(2–3):205–10. PubMed Europe PMC Scholia
  71. Functional and structural analysis of ClC-K chloride channels involved in renal disease. Waldegger S, Jentsch TJ. J Biol Chem. 2000 Aug 11;275(32):24527–33. PubMed Europe PMC Scholia
  72. Human and mouse homologues of the Drosophila melanogaster tweety (tty) gene: a novel gene family encoding predicted transmembrane proteins. Campbell HD, Kamei M, Claudianos C, Woollatt E, Sutherland GR, Suzuki Y, et al. Genomics. 2000 Aug 15;68(1):89–92. PubMed Europe PMC Scholia
  73. Dominant isolated renal magnesium loss is caused by misrouting of the Na(+),K(+)-ATPase gamma-subunit. Meij IC, Koenderink JB, van Bokhoven H, Assink KF, Groenestege WT, de Pont JJ, et al. Nat Genet. 2000 Nov;26(3):265–6. PubMed Europe PMC Scholia
  74. Disruption of ClC-3, a chloride channel expressed on synaptic vesicles, leads to a loss of the hippocampus. Stobrawa SM, Breiderhoff T, Takamori S, Engel D, Schweizer M, Zdebik AA, et al. Neuron. 2001 Jan;29(1):185–96. PubMed Europe PMC Scholia
  75. Nonsteroid anti-inflammatory drugs inhibit both the activity and the inflammation-induced expression of acid-sensing ion channels in nociceptors. Voilley N, de Weille J, Mamet J, Lazdunski M. J Neurosci. 2001 Oct 15;21(20):8026–33. PubMed Europe PMC Scholia
  76. Mutation of BSND causes Bartter syndrome with sensorineural deafness and kidney failure. Birkenhäger R, Otto E, Schürmann MJ, Vollmer M, Ruf EM, Maier-Lutz I, et al. Nat Genet. 2001 Nov;29(3):310–4. PubMed Europe PMC Scholia
  77. Barttin is a Cl- channel beta-subunit crucial for renal Cl- reabsorption and inner ear K+ secretion. Estévez R, Boettger T, Stein V, Birkenhäger R, Otto E, Hildebrandt F, et al. Nature. 2001 Nov 29;414(6863):558–61. PubMed Europe PMC Scholia
  78. Mutational analysis of the transferrin receptor reveals overlapping HFE and transferrin binding sites. West AP Jr, Giannetti AM, Herr AB, Bennett MJ, Nangiana JS, Pierce JR, et al. J Mol Biol. 2001 Oct 19;313(2):385–97. PubMed Europe PMC Scholia
  79. The vitelliform macular dystrophy protein defines a new family of chloride channels. Sun H, Tsunenari T, Yau KW, Nathans J. Proc Natl Acad Sci U S A. 2002 Mar 19;99(6):4008–13. PubMed Europe PMC Scholia
  80. Physical mapping and characterization of the human Na,K-ATPase isoform, ATP1A4. Keryanov S, Gardner KL. Gene. 2002 Jun 12;292(1–2):151–66. PubMed Europe PMC Scholia
  81. Structure-function analysis of the bestrophin family of anion channels. Tsunenari T, Sun H, Williams J, Cahill H, Smallwood P, Yau KW, et al. J Biol Chem. 2003 Oct 17;278(42):41114–25. PubMed Europe PMC Scholia
  82. Novel mutations in the Na+, K+-ATPase pump gene ATP1A2 associated with familial hemiplegic migraine and benign familial infantile convulsions. Vanmolkot KRJ, Kors EE, Hottenga JJ, Terwindt GM, Haan J, Hoefnagels WAJ, et al. Ann Neurol. 2003 Sep;54(3):360–6. PubMed Europe PMC Scholia
  83. The expression and functional characterization of ABCG2 in brain endothelial cells and vessels. Zhang W, Mojsilovic-Petrovic J, Andrade MF, Zhang H, Ball M, Stanimirovic DB. FASEB J. 2003 Nov;17(14):2085–7. PubMed Europe PMC Scholia
  84. Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2). Doyle LA, Ross DD. Oncogene. 2003 Oct 20;22(47):7340–58. PubMed Europe PMC Scholia
  85. Chloride channel ClCN7 mutations are responsible for severe recessive, dominant, and intermediate osteopetrosis. Frattini A, Pangrazio A, Susani L, Sobacchi C, Mirolo M, Abinun M, et al. J Bone Miner Res. 2003 Oct;18(10):1740–7. PubMed Europe PMC Scholia
  86. A new sperm-specific Na+/H+ exchanger required for sperm motility and fertility. Wang D, King SM, Quill TA, Doolittle LK, Garbers DL. Nat Cell Biol. 2003 Dec;5(12):1117–22. PubMed Europe PMC Scholia
  87. A novel human Cl(-) channel family related to Drosophila flightless locus. Suzuki M, Mizuno A. J Biol Chem. 2004 May 21;279(21):22461–8. PubMed Europe PMC Scholia
  88. Variations in GABRA2, encoding the alpha 2 subunit of the GABA(A) receptor, are associated with alcohol dependence and with brain oscillations. Edenberg HJ, Dick DM, Xuei X, Tian H, Almasy L, Bauer LO, et al. Am J Hum Genet. 2004 Apr;74(4):705–14. PubMed Europe PMC Scholia
  89. The stem cell marker Bcrp/ABCG2 enhances hypoxic cell survival through interactions with heme. Krishnamurthy P, Ross DD, Nakanishi T, Bailey-Dell K, Zhou S, Mercer KE, et al. J Biol Chem. 2004 Jun 4;279(23):24218–25. PubMed Europe PMC Scholia
  90. Salt wasting and deafness resulting from mutations in two chloride channels. Schlingmann KP, Konrad M, Jeck N, Waldegger P, Reinalter SC, Holder M, et al. N Engl J Med. 2004 Mar 25;350(13):1314–9. PubMed Europe PMC Scholia
  91. CLIC-2 modulates cardiac ryanodine receptor Ca2+ release channels. Board PG, Coggan M, Watson S, Gage PW, Dulhunty AF. Int J Biochem Cell Biol. 2004 Aug;36(8):1599–612. PubMed Europe PMC Scholia
  92. Alternating hemiplegia of childhood or familial hemiplegic migraine? A novel ATP1A2 mutation. Swoboda KJ, Kanavakis E, Xaidara A, Johnson JE, Leppert MF, Schlesinger-Massart MB, et al. Ann Neurol. 2004 Jun;55(6):884–7. PubMed Europe PMC Scholia
  93. Mutations in the Na+/K+ -ATPase alpha3 gene ATP1A3 are associated with rapid-onset dystonia parkinsonism. de Carvalho Aguiar P, Sweadner KJ, Penniston JT, Zaremba J, Liu L, Caton M, et al. Neuron. 2004 Jul 22;43(2):169–75. PubMed Europe PMC Scholia
  94. Identification of a human heme exporter that is essential for erythropoiesis. Quigley JG, Yang Z, Worthington MT, Phillips JD, Sabo KM, Sabath DE, et al. Cell. 2004 Sep 17;118(6):757–66. PubMed Europe PMC Scholia
  95. ClC-3 chloride channels facilitate endosomal acidification and chloride accumulation. Hara-Chikuma M, Yang B, Sonawane ND, Sasaki S, Uchida S, Verkman AS. J Biol Chem. 2005 Jan 14;280(2):1241–7. PubMed Europe PMC Scholia
  96. NPT4, a new microsomal phosphate transporter: mutation analysis in glycogen storage disease type Ic. Melis D, Havelaar AC, Verbeek E, Smit GPA, Benedetti A, Mancini GMS, et al. J Inherit Metab Dis. 2004;27(6):725–33. PubMed Europe PMC Scholia
  97. In vitro functional analysis of human ferroportin (FPN) and hemochromatosis-associated FPN mutations. Schimanski LM, Drakesmith H, Merryweather-Clarke AT, Viprakasit V, Edwards JP, Sweetland E, et al. Blood. 2005 May 15;105(10):4096–102. PubMed Europe PMC Scholia
  98. The secretory pathway Ca2+/Mn2+-ATPase 2 is a Golgi-localized pump with high affinity for Ca2+ ions. Vanoevelen J, Dode L, Van Baelen K, Fairclough RJ, Missiaen L, Raeymaekers L, et al. J Biol Chem. 2005 Jun 17;280(24):22800–8. PubMed Europe PMC Scholia
  99. A recently identified member of the glutathione transferase structural family modifies cardiac RyR2 substate activity, coupled gating and activation by Ca2+ and ATP. Dulhunty AF, Pouliquin P, Coggan M, Gage PW, Board PG. Biochem J. 2005 Aug 15;390(Pt 1):333–43. PubMed Europe PMC Scholia
  100. The type 4 subfamily of P-type ATPases, putative aminophospholipid translocases with a role in human disease. Paulusma CC, Oude Elferink RPJ. Biochim Biophys Acta. 2005 Jun 30;1741(1–2):11–24. PubMed Europe PMC Scholia
  101. Identification of an intestinal heme transporter. Shayeghi M, Latunde-Dada GO, Oakhill JS, Laftah AH, Takeuchi K, Halliday N, et al. Cell. 2005 Sep 9;122(5):789–801. PubMed Europe PMC Scholia
  102. The Drosophila tweety family: molecular candidates for large-conductance Ca2+-activated Cl- channels. Suzuki M. Exp Physiol. 2006 Jan;91(1):141–7. PubMed Europe PMC Scholia
  103. Identification of a ferrireductase required for efficient transferrin-dependent iron uptake in erythroid cells. Ohgami RS, Campagna DR, Greer EL, Antiochos B, McDonald A, Chen J, et al. Nat Genet. 2005 Nov;37(11):1264–9. PubMed Europe PMC Scholia
  104. Recombinant expression and functional characterization of human hephaestin: a multicopper oxidase with ferroxidase activity. Griffiths TAM, Mauk AG, MacGillivray RTA. Biochemistry. 2005 Nov 15;44(45):14725–31. PubMed Europe PMC Scholia
  105. Duodenal cytochrome b: a novel ferrireductase in airway epithelial cells. Turi JL, Wang X, McKie AT, Nozik-Grayck E, Mamo LB, Crissman K, et al. Am J Physiol Lung Cell Mol Physiol. 2006 Aug;291(2):L272-80. PubMed Europe PMC Scholia
  106. The mechanism of iron release from the transferrin-receptor 1 adduct. Hémadi M, Ha-Duong NT, El Hage Chahine JM. J Mol Biol. 2006 May 12;358(4):1125–36. PubMed Europe PMC Scholia
  107. The Steap proteins are metalloreductases. Ohgami RS, Campagna DR, McDonald A, Fleming MD. Blood. 2006 Aug 15;108(4):1388–94. PubMed Europe PMC Scholia
  108. The crystal structure of iron-free human serum transferrin provides insight into inter-lobe communication and receptor binding. Wally J, Halbrooks PJ, Vonrhein C, Rould MA, Everse SJ, Mason AB, et al. J Biol Chem. 2006 Aug 25;281(34):24934–44. PubMed Europe PMC Scholia
  109. Mutations in OSTM1 (grey lethal) define a particularly severe form of autosomal recessive osteopetrosis with neural involvement. Pangrazio A, Poliani PL, Megarbane A, Lefranc G, Lanino E, Di Rocco M, et al. J Bone Miner Res. 2006 Jul;21(7):1098–105. PubMed Europe PMC Scholia
  110. Barttin modulates trafficking and function of ClC-K channels. Scholl U, Hebeisen S, Janssen AGH, Müller-Newen G, Alekov A, Fahlke C. Proc Natl Acad Sci U S A. 2006 Jul 25;103(30):11411–6. PubMed Europe PMC Scholia
  111. Cloning of a novel human NHEDC1 (Na+/H+ exchanger like domain containing 1) gene expressed specifically in testis. Ye G, Chen C, Han D, Xiong X, Kong Y, Wan B, et al. Mol Biol Rep. 2006 Sep;33(3):175–80. PubMed Europe PMC Scholia
  112. A genetic association study of chromosome 11q22-24 in two different samples implicates the FXYD6 gene, encoding phosphohippolin, in susceptibility to schizophrenia. Choudhury K, McQuillin A, Puri V, Pimm J, Datta S, Thirumalai S, et al. Am J Hum Genet. 2007 Apr;80(4):664–72. PubMed Europe PMC Scholia
  113. Characterization of the novel human serotonin receptor subunits 5-HT3C,5-HT3D, and 5-HT3E. Niesler B, Walstab J, Combrink S, Möller D, Kapeller J, Rietdorf J, et al. Mol Pharmacol. 2007 Jul;72(1):8–17. PubMed Europe PMC Scholia
  114. A single amino acid in the second transmembrane domain of GABA rho receptors regulates channel conductance. Zhu Y, Ripps H, Qian H. Neurosci Lett. 2007 May 17;418(2):205–9. PubMed Europe PMC Scholia
  115. The neuronal channel NALCN contributes resting sodium permeability and is required for normal respiratory rhythm. Lu B, Su Y, Das S, Liu J, Xia J, Ren D. Cell. 2007 Apr 20;129(2):371–83. PubMed Europe PMC Scholia
  116. Colocalization of ferroportin-1 with hephaestin on the basolateral membrane of human intestinal absorptive cells. Han O, Kim EY. J Cell Biochem. 2007 Jul 1;101(4):1000–10. PubMed Europe PMC Scholia
  117. Coupling of rotation and catalysis in F(1)-ATPase revealed by single-molecule imaging and manipulation. Adachi K, Oiwa K, Nishizaka T, Furuike S, Noji H, Itoh H, et al. Cell. 2007 Jul 27;130(2):309–21. PubMed Europe PMC Scholia
  118. Intramolecular disulfide bond is a critical check point determining degradative fates of ATP-binding cassette (ABC) transporter ABCG2 protein. Wakabayashi K, Nakagawa H, Tamura A, Koshiba S, Hoshijima K, Komada M, et al. J Biol Chem. 2007 Sep 21;282(38):27841–6. PubMed Europe PMC Scholia
  119. Characterization of human cardiac calsequestrin and its deleterious mutants. Kim E, Youn B, Kemper L, Campbell C, Milting H, Varsanyi M, et al. J Mol Biol. 2007 Nov 2;373(4):1047–57. PubMed Europe PMC Scholia
  120. A human Na+/H+ antiporter sharing evolutionary origins with bacterial NhaA may be a candidate gene for essential hypertension. Xiang M, Feng M, Muend S, Rao R. Proc Natl Acad Sci U S A. 2007 Nov 20;104(47):18677–81. PubMed Europe PMC Scholia
  121. Determinants of anion-proton coupling in mammalian endosomal CLC proteins. Zdebik AA, Zifarelli G, Bergsdorf EY, Soliani P, Scheel O, Jentsch TJ, et al. J Biol Chem. 2008 Feb 15;283(7):4219–27. PubMed Europe PMC Scholia
  122. Functional characterization of human duodenal cytochrome b (Cybrd1): Redox properties in relation to iron and ascorbate metabolism. Oakhill JS, Marritt SJ, Gareta EG, Cammack R, McKie AT. Biochim Biophys Acta. 2008 Mar;1777(3):260–8. PubMed Europe PMC Scholia
  123. Lysosomes in iron metabolism, ageing and apoptosis. Kurz T, Terman A, Gustafsson B, Brunk UT. Histochem Cell Biol. 2008 Apr;129(4):389–406. PubMed Europe PMC Scholia
  124. Molecular analysis of digenic inheritance in Bartter syndrome with sensorineural deafness. Nozu K, Inagaki T, Fu XJ, Nozu Y, Kaito H, Kanda K, et al. J Med Genet. 2008 Mar;45(3):182–6. PubMed Europe PMC Scholia
  125. Bestrophin Cl- channels are highly permeable to HCO3-. Qu Z, Hartzell HC. Am J Physiol Cell Physiol. 2008 Jun;294(6):C1371-7. PubMed Europe PMC Scholia
  126. The Cl-/H+ antiporter ClC-7 is the primary chloride permeation pathway in lysosomes. Graves AR, Curran PK, Smith CL, Mindell JA. Nature. 2008 Jun 5;453(7196):788–92. PubMed Europe PMC Scholia
  127. Regulation of ASIC activity by ASIC4--new insights into ASIC channel function revealed by a yeast two-hybrid assay. Donier E, Rugiero F, Jacob C, Wood JN. Eur J Neurosci. 2008 Jul;28(1):74–86. PubMed Europe PMC Scholia
  128. TMEM16A confers receptor-activated calcium-dependent chloride conductance. Yang YD, Cho H, Koo JY, Tak MH, Cho Y, Shim WS, et al. Nature. 2008 Oct 30;455(7217):1210–5. PubMed Europe PMC Scholia
  129. The type IV mucolipidosis-associated protein TRPML1 is an endolysosomal iron release channel. Dong XP, Cheng X, Mills E, Delling M, Wang F, Kurz T, et al. Nature. 2008 Oct 16;455(7215):992–6. PubMed Europe PMC Scholia
  130. Enhanced alternative splicing of the FLVCR1 gene in Diamond Blackfan anemia disrupts FLVCR1 expression and function that are critical for erythropoiesis. Rey MA, Duffy SP, Brown JK, Kennedy JA, Dick JE, Dror Y, et al. Haematologica. 2008 Nov;93(11):1617–26. PubMed Europe PMC Scholia
  131. Ceruloplasmin in neurodegenerative diseases. Texel SJ, Xu X, Harris ZL. Biochem Soc Trans. 2008 Dec;36(Pt 6):1277–81. PubMed Europe PMC Scholia
  132. Voltage-dependent and -independent titration of specific residues accounts for complex gating of a ClC chloride channel by extracellular protons. Niemeyer MI, Cid LP, Yusef YR, Briones R, Sepúlveda FV. J Physiol. 2009 Apr 1;587(Pt 7):1387–400. PubMed Europe PMC Scholia
  133. Epithelial sodium channel regulated by differential composition of a signaling complex. Soundararajan R, Melters D, Shih IC, Wang J, Pearce D. Proc Natl Acad Sci U S A. 2009 May 12;106(19):7804–9. PubMed Europe PMC Scholia
  134. A general map of iron metabolism and tissue-specific subnetworks. Hower V, Mendes P, Torti FM, Laubenbacher R, Akman S, Shulaev V, et al. Mol Biosyst. 2009 May;5(5):422–43. PubMed Europe PMC Scholia
  135. NAADP mobilizes calcium from acidic organelles through two-pore channels. Calcraft PJ, Ruas M, Pan Z, Cheng X, Arredouani A, Hao X, et al. Nature. 2009 May 28;459(7246):596–600. PubMed Europe PMC Scholia
  136. Decreased hephaestin expression and activity leads to decreased iron efflux from differentiated Caco2 cells. Chen H, Attieh ZK, Dang T, Huang G, van der Hee RM, Vulpe C. J Cell Biochem. 2009 Jul 1;107(4):803–8. PubMed Europe PMC Scholia
  137. Essential requirement for two-pore channel 1 in NAADP-mediated calcium signaling. Brailoiu E, Churamani D, Cai X, Schrlau MG, Brailoiu GC, Gao X, et al. J Cell Biol. 2009 Jul 27;186(2):201–9. PubMed Europe PMC Scholia
  138. Molecular and clinical heterogeneity in CLCN7-dependent osteopetrosis: report of 20 novel mutations. Pangrazio A, Pusch M, Caldana E, Frattini A, Lanino E, Tamhankar PM, et al. Hum Mutat. 2010 Jan;31(1):E1071-80. PubMed Europe PMC Scholia
  139. The late endosomal ClC-6 mediates proton/chloride countertransport in heterologous plasma membrane expression. Neagoe I, Stauber T, Fidzinski P, Bergsdorf EY, Jentsch TJ. J Biol Chem. 2010 Jul 9;285(28):21689–97. PubMed Europe PMC Scholia
  140. Mitochondrial iron trafficking and the integration of iron metabolism between the mitochondrion and cytosol. Richardson DR, Lane DJR, Becker EM, Huang MLH, Whitnall M, Suryo Rahmanto Y, et al. Proc Natl Acad Sci U S A. 2010 Jun 15;107(24):10775–82. PubMed Europe PMC Scholia
  141. Serum and glucocorticoid-induced kinase (SGK) 1 and the epithelial sodium channel are regulated by multiple with no lysine (WNK) family members. Heise CJ, Xu B e, Deaton SL, Cha SK, Cheng CJ, Earnest S, et al. J Biol Chem. 2010 Aug 13;285(33):25161–7. PubMed Europe PMC Scholia
  142. Barttin activates ClC-K channel function by modulating gating. Fischer M, Janssen AGH, Fahlke C. J Am Soc Nephrol. 2010 Aug;21(8):1281–9. PubMed Europe PMC Scholia
  143. Human sodium phosphate transporter 4 (hNPT4/SLC17A3) as a common renal secretory pathway for drugs and urate. Jutabha P, Anzai N, Kitamura K, Taniguchi A, Kaneko S, Yan K, et al. J Biol Chem. 2010 Nov 5;285(45):35123–32. PubMed Europe PMC Scholia
  144. Extracellular calcium controls background current and neuronal excitability via an UNC79-UNC80-NALCN cation channel complex. Lu B, Zhang Q, Wang H, Wang Y, Nakayama M, Ren D. Neuron. 2010 Nov 4;68(3):488–99. PubMed Europe PMC Scholia
  145. ClC-7 is a slowly voltage-gated 2Cl(-)/1H(+)-exchanger and requires Ostm1 for transport activity. Leisle L, Ludwig CF, Wagner FA, Jentsch TJ, Stauber T. EMBO J. 2011 Jun 1;30(11):2140–52. PubMed Europe PMC Scholia
  146. The anoctamin family: TMEM16A and TMEM16B as calcium-activated chloride channels. Scudieri P, Sondo E, Ferrera L, Galietta LJV. Exp Physiol. 2012 Feb;97(2):177–83. PubMed Europe PMC Scholia
  147. Anoctamins are a family of Ca2+-activated Cl- channels. Tian Y, Schreiber R, Kunzelmann K. J Cell Sci. 2012 Nov 1;125(Pt 21):4991–8. PubMed Europe PMC Scholia