TCA cycle (plant) (WP3009)

Oryza sativa

The TCA cycle mediates the catabolism of acetyl-CoA to yield two molecules of CO2 and reducing equivalents in the form of NADH + H+ and FADH2. In plants, it is also an important source of carbon skeletons for biosynthetic reactions. Description from [http://plantreactome.gramene.org/ Plant Reactome]. Developed by Gramene.org. Source:[http://plantreactome.gramene.org/ Plant Reactome].

Authors

Anwesha Bohler , Eric Weitz , and Kristina Hanspers

Activity

last edited

Discuss this pathway

Check for ongoing discussions or start your own.

Cited In

Are you planning to include this pathway in your next publication? See How to Cite and add a link here to your paper once it's online.

Organisms

Oryza sativa

Communities

Annotations

Pathway Ontology

classic metabolic pathway citric acid cycle pathway

Participants

Label Type Compact URI Comment
NADH Metabolite chebi:16908
NADH Metabolite chebi:16908
CO2 Metabolite chebi:16526
QH2 Metabolite chebi:17976
MAL Metabolite chebi:30797
H+ Metabolite chebi:15378
H+ Metabolite chebi:15378
CoA-SH Metabolite chebi:15346
Ac-CoA Metabolite chebi:15351
FUMA Metabolite chebi:18012
NAD+ Metabolite chebi:15846
NADH Metabolite chebi:16908
ADP Metabolite chebi:16761
Pi Metabolite chebi:18367
SUCC-CoA Metabolite chebi:15380
H+ Metabolite chebi:15378
CO2 Metabolite chebi:16526
OA Metabolite chebi:30744
SUCCA Metabolite chebi:15741
PYR Metabolite chebi:32816
ISCIT Metabolite chebi:151
CoQ Metabolite chebi:16389
2OG Metabolite chebi:30915
NAD+ Metabolite chebi:15846
H2O Metabolite chebi:15377
CoA-SH Metabolite chebi:15346
CoA-SH Metabolite chebi:15346
H+ Metabolite chebi:15378
CoA-SH Metabolite chebi:15346
NAD+ Metabolite chebi:15846
NADH Metabolite chebi:16908
CIT Metabolite chebi:30769
NAD+ Metabolite chebi:15846
H2O Metabolite chebi:15377
CO2 Metabolite chebi:16526
ATP Metabolite chebi:15422
ACO Protein reactome:1121696 Facilitates the conversion of 2-isopropylmalate to 3-isopropylmalate.
CSY Protein reactome:1121841 Catalyzes the conversion of Acetyl-CoA to Citric acid.
Malate dehydrogenase(decarboxylating) Protein reactome:5146764 Catalyzes the conversion of (S)-malate to pyruvate.
FUM1(LOC_Os03g21950.1) Protein uniprot:Q10LR5 Catalyzes the convertion of fumaric acid into malate.
MDH Protein reactome:1122020

References

  1. Purification of NAD malic enzyme from potato and investigation of some physical and kinetic properties. Grover SD, Canellas PF, Wedding RT. Arch Biochem Biophys. 1981 Jul;209(2):396–407. PubMed Europe PMC Scholia
  2. Three different genes encode the iron-sulfur subunit of succinate dehydrogenase in Arabidopsis thaliana. Figueroa P, León G, Elorza A, Holuigue L, Jordana X. Plant Mol Biol. 2001 May;46(2):241–50. PubMed Europe PMC Scholia
  3. The four subunits of mitochondrial respiratory complex II are encoded by multiple nuclear genes and targeted to mitochondria in Arabidopsis thaliana. Figueroa P, Léon G, Elorza A, Holuigue L, Araya A, Jordana X. Plant Mol Biol. 2002 Nov;50(4–5):725–34. PubMed Europe PMC Scholia
  4. Localization of NAD-isocitrate dehydrogenase and glutamate dehydrogenase in rice roots: candidates for providing carbon skeletons to NADH-glutamate synthase. Abiko T, Obara M, Ushioda A, Hayakawa T, Hodges M, Yamaya T. Plant Cell Physiol. 2005 Oct;46(10):1724–34. PubMed Europe PMC Scholia
  5. Identification and characterisation of the alpha and beta subunits of succinyl CoA ligase of tomato. Studart-Guimarães C, Gibon Y, Frankel N, Wood CC, Zanor MI, Fernie AR, et al. Plant Mol Biol. 2005 Nov;59(5):781–91. PubMed Europe PMC Scholia
  6. Pyruvate and malate transport and oxidation in corn mitochondria. Day DA, Hanson JB. Plant Physiol. 1977 Apr;59(4):630–5. PubMed Europe PMC Scholia
  7. Three different and tissue-specific NAD-malic enzymes generated by alternative subunit association in Arabidopsis thaliana. Tronconi MA, Maurino VG, Andreo CS, Drincovich MF. J Biol Chem. 2010 Apr 16;285(16):11870–9. PubMed Europe PMC Scholia
  8. NAD-malic enzymes of Arabidopsis thaliana display distinct kinetic mechanisms that support differences in physiological control. Tronconi MA, Gerrard Wheeler MC, Maurino VG, Drincovich MF, Andreo CS. Biochem J. 2010 Sep 1;430(2):295–303. PubMed Europe PMC Scholia
  9. Not just a circle: flux modes in the plant TCA cycle. Sweetlove LJ, Beard KFM, Nunes-Nesi A, Fernie AR, Ratcliffe RG. Trends Plant Sci. 2010 Aug;15(8):462–70. PubMed Europe PMC Scholia
  10. Organization and regulation of mitochondrial respiration in plants. Millar AH, Whelan J, Soole KL, Day DA. Annu Rev Plant Biol. 2011;62:79–104. PubMed Europe PMC Scholia
  11. Metabolic control and regulation of the tricarboxylic acid cycle in photosynthetic and heterotrophic plant tissues. Araújo WL, Nunes-Nesi A, Nikoloski Z, Sweetlove LJ, Fernie AR. Plant Cell Environ. 2012 Jan;35(1):1–21. PubMed Europe PMC Scholia