Oxidative phosphorylation (WP623)
Homo sapiens
Oxidative phosphorylation is the process in which ATP is formed as a result of the transfer of electrons from NADH or FADH2 to O2 by a series of electron carriers. This process, which takes place in mitochondria, is the major source of ATP in aerobic organisms. [https://www.ncbi.nlm.nih.gov/books/NBK21208/] Proteins on this pathway have targeted assays available via the [https://assays.cancer.gov/available_assays?wp_id=WP623 CPTAC Assay Portal]
Authors
Andra Waagmeester , Martijn Van Iersel , Kristina Hanspers , Alex Pico , Allan Kuchinsky , Zahra Roudbari , Martina Summer-Kutmon , Denise Slenter , Egon Willighagen , Friederike Ehrhart , and Eric WeitzActivity
Discuss this pathway
Check for ongoing discussions or start your own.
Cited In
- A Pilot Mitochondrial Genome-Wide Association on Migraine Among Saudi Arabians (2022).
- DNA methylation of ARHGAP30 is negatively associated with ARHGAP30 expression in lung adenocarcinoma, which reduces tumor immunity and is detrimental to patient survival (2021).
- Skeletal muscle reprogramming by breast cancer regardless of treatment history or tumor molecular subtype (2020).
- Long-term cardiovascular disorders in the STOX1 mouse model of preeclampsia (2019).
- Pathway analysis of transcriptomic data shows immunometabolic effects of vitamin D (2018).
- Pre-silencing of genes involved in the electron transport chain (ETC) pathway is associated with responsiveness to abatacept in rheumatoid arthritis (2017).
- A patient-based iPSC-derived hepatocyte model of alcohol-associated cirrhosis reveals bioenergetic insights into disease pathogenesis (2024).
Are you planning to include this pathway in your next publication? See How to Cite and add a link here to your paper once it's online.
Organisms
Homo sapiensCommunities
Annotations
Pathway Ontology
oxidative phosphorylation pathwayLabel | Type | Compact URI | Comment |
---|---|---|---|
NAD | Metabolite | hmdb:HMDB0000902 | |
NADH | Metabolite | hmdb:HMDB0001487 | |
ADP | Metabolite | hmdb:HMDB0001341 | |
ATP | Metabolite | hmdb:HMDB0000538 | |
Hydrogen | Metabolite | chebi:15378 | |
NDUFS7 | GeneProduct | ncbigene:374291 | |
ATP5D | GeneProduct | ncbigene:513 | |
ATP5G3 | GeneProduct | ncbigene:518 | |
NDUFA4 | GeneProduct | ncbigene:4697 | |
NDUFB4 | GeneProduct | ncbigene:4710 | |
NDUFS5 | GeneProduct | ncbigene:4725 | |
B22 | GeneProduct | ncbigene:4715 | |
CI-75Kd | GeneProduct | ncbigene:4719 | |
B9 | GeneProduct | ncbigene:4696 | |
ATP5G1 | GeneProduct | ncbigene:516 | |
B18 | GeneProduct | ncbigene:4713 | |
NDUFB2 | GeneProduct | ncbigene:4708 | |
CI-SGDH | GeneProduct | ncbigene:4707 | |
ATP6 | GeneProduct | ncbigene:4508 | |
NDUFS6 | GeneProduct | ncbigene:4726 | |
KFYI | GeneProduct | ncbigene:4717 | |
NDUFV3 | GeneProduct | ncbigene:4731 | |
ASHI | GeneProduct | ncbigene:4714 | |
NDUFA8 | GeneProduct | ncbigene:4702 | |
FASN2A | GeneProduct | ncbigene:4706 | |
B13 | GeneProduct | ncbigene:4698 | |
B17 | GeneProduct | ncbigene:4712 | |
CI-42KD | GeneProduct | ncbigene:4705 | |
NDUFA9 | GeneProduct | ncbigene:4704 | |
ATP5O | GeneProduct | ncbigene:539 | |
B14.5a | GeneProduct | ncbigene:4701 | |
ATP5F1 | GeneProduct | ncbigene:515 | |
B14.5b | GeneProduct | ncbigene:4718 | |
ATP5L | GeneProduct | ncbigene:10632 | |
MT-ATP6 | GeneProduct | ensembl:ENSG00000198899 | |
MT-ATP8 | GeneProduct | ensembl:ENSG00000198744 | |
AQDQ | GeneProduct | ncbigene:4724 | |
ND4L | GeneProduct | ncbigene:4539 | |
NUOMS | GeneProduct | ncbigene:56901 | |
ATP5G2 | GeneProduct | ncbigene:517 | |
NDUFB10 | GeneProduct | ncbigene:4716 | |
GZMB | GeneProduct | ncbigene:3002 | |
ATP5H | GeneProduct | ncbigene:10476 | |
NDUFS3 | GeneProduct | ncbigene:4722 | |
NDUFV2 | GeneProduct | ncbigene:4729 | |
ND5 | GeneProduct | ncbigene:4540 | |
ND3 | GeneProduct | ncbigene:4537 | |
NDUFA2 | GeneProduct | ncbigene:4695 | |
B15 | GeneProduct | ncbigene:4710 | |
NDUFS2 | GeneProduct | ncbigene:4720 | |
NDUFS8 | GeneProduct | ncbigene:4728 | |
ATP6AP1 | GeneProduct | ncbigene:537 | |
CI-SGDH | GeneProduct | ncbigene:4711 | |
ATP5E | GeneProduct | ncbigene:514 | |
ATP5I | GeneProduct | ncbigene:521 | |
ATP5B | GeneProduct | ncbigene:506 | |
ND1 | GeneProduct | ncbigene:4535 | |
ATP5S | GeneProduct | ncbigene:27109 | |
ATP5J | GeneProduct | ncbigene:522 | |
ATP6AP2 | GeneProduct | ncbigene:10159 | |
ATP5J2 | GeneProduct | ncbigene:9551 | |
B14 | GeneProduct | ncbigene:4700 | |
ND6 | GeneProduct | ncbigene:4541 | |
NDUFA11 | GeneProduct | ncbigene:126328 | |
ATP5A1 | GeneProduct | ncbigene:498 | |
CI-51kD | GeneProduct | ncbigene:4723 | |
ND4 | GeneProduct | ncbigene:4538 | |
ND2 | GeneProduct | ncbigene:4536 |
References
- Keilin’s respiratory chain concept and its chemiosmotic consequences. Mitchell P. Science. 1979 Dec 7;206(4423):1148–59. PubMed Europe PMC Scholia
- The structure, function and evolution of cytochromes. Mathews FS. Prog Biophys Mol Biol. 1985;45(1):1–56. PubMed Europe PMC Scholia
- Chemiosmotic hypothesis of oxidative phosphorylation. Mitchell P, Moyle J. Nature. 1967 Jan 14;213(5072):137–9. PubMed Europe PMC Scholia
- Chemi-osmotic theory of oxidative phosphorylation. Tager JM, Veldsema-Currie RD, Slater EC. Nature. 1966 Oct 22;212(5060):376–9. PubMed Europe PMC Scholia
- Mitochondrial proton conductance and H+/O ratio are independent of electron transport rate in isolated hepatocytes. Porter RK, Brand MD. Biochem J. 1995 Sep 1;310 ( Pt 2)(Pt 2):379–82. PubMed Europe PMC Scholia
- Crucial role of the membrane potential for ATP synthesis by F(1)F(o) ATP synthases. Dimroth P, Kaim G, Matthey U. J Exp Biol. 2000 Jan;203(Pt 1):51–9. PubMed Europe PMC Scholia
- Structures and proton-pumping strategies of mitochondrial respiratory enzymes. Schultz BE, Chan SI. Annu Rev Biophys Biomol Struct. 2001;30:23–65. PubMed Europe PMC Scholia
- Biochemical functions of coenzyme Q10. Crane FL. J Am Coll Nutr. 2001 Dec;20(6):591–8. PubMed Europe PMC Scholia
- The molecular machinery of Keilin’s respiratory chain. Rich PR. Biochem Soc Trans. 2003 Dec;31(Pt 6):1095–105. PubMed Europe PMC Scholia
- Disturbances of purine nucleotide metabolism in uremia. Rutkowski B, Swierczynski J, Slominska E, Szolkiewicz M, Smolenski RT, Marlewski M, et al. Semin Nephrol. 2004 Sep;24(5):479–83. PubMed Europe PMC Scholia
- Lipid rafts are required in Galpha(i) signaling downstream of the P2Y12 receptor during ADP-mediated platelet activation. Quinton TM, Kim S, Jin J, Kunapuli SP. J Thromb Haemost. 2005 May;3(5):1036–41. PubMed Europe PMC Scholia