The Tryptophan Kynurenine Pathway (TKP) in Post-Covid Syndrome (PCS) (WP5549)

Homo sapiens

Following the SARS-CoV-2 pandemic, increasing evidence suggests that the overactivation of the Tryptophan–Kynurenine Pathway (TKP) plays a significant role in the pathophysiology of Post-Covid syndrome. This dysregulation is marked by reduced tryptophan (TRP) levels and elevated concentrations of specific tryptophan catabolites (TRYCATs). Notably, heightened TKP activity has been observed in patients exhibiting symptoms of post-acute sequelae of COVID-19 (PASC). In fact, elevated levels of TKP metabolites such as quinolinic acid, 3- hydroxy anthranilic acid and kynurenine, have been associated with cognitive impairments. Persistent inflammatory conditions observed in Post-Covid patients potentially upregulate the indoleamine 2,3-dioxygenase (IDO) enzymes, specifically IDO 1, as well as KMO, which catalyses the conversion from Kynurenine to 3-Hydroxykynurenine. Thus, the kynurenine pathway relates to PACS and potentially enables future biomarker and therapeutic possibilities.

Authors

Kristof-Kirps

Activity

last edited

Discuss this pathway

Check for ongoing discussions or start your own.

Cited In

Are you planning to include this pathway in your next publication? See How to Cite and add a link here to your paper once it's online.

Organisms

Homo sapiens

Communities

Annotations

Pathway Ontology

kynurenine metabolic pathway tryptophan metabolic pathway immune system disease pathway nervous system disease pathway

Disease Ontology

long COVID mild cognitive impairment

Participants

Label Type Compact URI Comment
Anthranilic acid Metabolite chebi:30754
Kynurenine Metabolite chebi:28683
N-Formylkynurenine Metabolite chebi:30249
3-Hydroxykynurenine Metabolite chebi:1547
3-Hydroxyanthranilic acid Metabolite hmdb:HMDB01476
Xanthurenic acid Metabolite hmdb:HMDB00881
Tryptophan Metabolite chebi:27897 OCR lexicon match: Trp
3-Hydroxykynurenamine Metabolite hmdb:HMDB0060281 3-Hydroxykynurenamine
Quinolinic acid Metabolite hmdb:HMDB00232
Kynurenic Acid Metabolite chebi:18344
H2O2 Metabolite chebi:16240
DDC GeneProduct hgnc.symbol:DDC catalyzes the decarboxylation of aromatic L-amino acids to their amine derivative
AADC (Aromatic L-amino acid decarboxylase)
IDO2 GeneProduct hgnc.symbol:IDO2
TNF GeneProduct hgnc.symbol:TNF
AADAT GeneProduct hgnc.symbol:AADAT KYAT2 = AADAT
Type your comment here
KMO GeneProduct hgnc.symbol:KMO
IL1B GeneProduct hgnc.symbol:IL1B
IFNB1 GeneProduct ensembl:ENSG00000171855
IL6 GeneProduct hgnc.symbol:IL6
AFMID GeneProduct hgnc.symbol:AFMID
HAAO GeneProduct hgnc.symbol:HAAO
IDO1 GeneProduct ncbigene:3620 OCR lexicon match: IDO
TDO2 GeneProduct ncbigene:6999 OCR lexicon match: TDO
KYNU GeneProduct hgnc.symbol:KYNU
KYNU GeneProduct ncbigene:8942
IFNG GeneProduct hgnc.symbol:IFNG
IFNA6 GeneProduct ensembl:ENSG00000120235
KYAT1 Protein uniprot:Q16773 KAT I/glutamine transaminase K/cysteine conjugate beta-lyase 1
KYAT2 Protein uniprot:Q8N5Z0 KAT II/aminoadipate aminotransferase
KYAT3 Protein uniprot:Q6YP21 KAT III/cysteine conjugate beta-lyase 2
KYAT4 Protein uniprot:P00505 KAT IV/glutamic-oxaloacetic transaminase 2/mitochondrial aspartate aminotransferase

References

  1. Relationship between interferon-gamma, indoleamine 2,3-dioxygenase, and tryptophan catabolism. Taylor MW, Feng GS. FASEB J. 1991 Aug;5(11):2516–22. PubMed Europe PMC Scholia
  2. Characterization of an indoleamine 2,3-dioxygenase induced by gamma-interferon in cultured human fibroblasts. Pfefferkorn ER, Rebhun S, Eckel M. J Interferon Res. 1986 Jun;6(3):267–79. PubMed Europe PMC Scholia
  3. Molecular cloning and functional expression of human 3-hydroxyanthranilic-acid dioxygenase. Malherbe P, Köhler C, Da Prada M, Lang G, Kiefer V, Schwarcz R, et al. J Biol Chem. 1994 May 13;269(19):13792–7. PubMed Europe PMC Scholia
  4. Hydrogen peroxide-mediated neuronal cell death induced by an endogenous neurotoxin, 3-hydroxykynurenine. Okuda S, Nishiyama N, Saito H, Katsuki H. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12553–8. PubMed Europe PMC Scholia
  5. Oxidative stress as a mechanism for quinolinic acid-induced hippocampal damage: protection by melatonin and deprenyl. Behan WM, McDonald M, Darlington LG, Stone TW. Br J Pharmacol. 1999 Dec;128(8):1754–60. PubMed Europe PMC Scholia
  6. 3-Hydroxykynurenine and 3-hydroxyanthranilic acid generate hydrogen peroxide and promote alpha-crystallin cross-linking by metal ion reduction. Goldstein LE, Leopold MC, Huang X, Atwood CS, Saunders AJ, Hartshorn M, et al. Biochemistry. 2000 Jun 20;39(24):7266–75. PubMed Europe PMC Scholia
  7. 3-Hydroxyanthranilic acid, an L-tryptophan metabolite, induces apoptosis in monocyte-derived cells stimulated by interferon-gamma. Morita T, Saito K, Takemura M, Maekawa N, Fujigaki S, Fujii H, et al. Ann Clin Biochem. 2001 May;38(Pt 3):242–51. PubMed Europe PMC Scholia
  8. Effect of arylformamidase (kynurenine formamidase) gene inactivation in mice on enzymatic activity, kynurenine pathway metabolites and phenotype. Dobrovolsky VN, Bowyer JF, Pabarcus MK, Heflich RH, Williams LD, Doerge DR, et al. Biochim Biophys Acta. 2005 Jun 20;1724(1–2):163–72. PubMed Europe PMC Scholia
  9. Excitotoxicity of quinolinic acid: modulation by endogenous antagonists. Jhamandas KH, Boegman RJ, Beninger RJ, Miranda AF, Lipic KA. Neurotox Res. 2000;2(2–3):139–55. PubMed Europe PMC Scholia
  10. Kynurenines impair energy metabolism in rat cerebral cortex. Schuck PF, Tonin A, da Costa Ferreira G, Viegas CM, Latini A, Duval Wannmacher CM, et al. Cell Mol Neurobiol. 2007 Feb;27(1):147–60. PubMed Europe PMC Scholia
  11. Aryl hydrocarbon receptor signaling mediates expression of indoleamine 2,3-dioxygenase. Vogel CFA, Goth SR, Dong B, Pessah IN, Matsumura F. Biochem Biophys Res Commun. 2008 Oct 24;375(3):331–5. PubMed Europe PMC Scholia
  12. Mechanism for quinolinic acid cytotoxicity in human astrocytes and neurons. Braidy N, Grant R, Adams S, Brew BJ, Guillemin GJ. Neurotox Res. 2009 Jul;16(1):77–86. PubMed Europe PMC Scholia
  13. Structure, expression, and function of kynurenine aminotransferases in human and rodent brains. Han Q, Cai T, Tagle DA, Li J. Cell Mol Life Sci. 2010 Feb;67(3):353–68. PubMed Europe PMC Scholia
  14. Quinolinic acid: an endogenous neurotoxin with multiple targets. Lugo-Huitrón R, Ugalde Muñiz P, Pineda B, Pedraza-Chaverrí J, Ríos C, Pérez-de la Cruz V. Oxid Med Cell Longev. 2013;2013:104024. PubMed Europe PMC Scholia
  15. Structure and mechanism of kynureninase. Phillips RS. Arch Biochem Biophys. 2014 Feb 15;544:69–74. PubMed Europe PMC Scholia
  16. Role of indoleamine 2,3-dioxygenase in health and disease. Yeung AWS, Terentis AC, King NJC, Thomas SR. Clin Sci (Lond). 2015 Oct;129(7):601–72. PubMed Europe PMC Scholia
  17. Kynurenine-3-monooxygenase: a review of structure, mechanism, and inhibitors. Smith JR, Jamie JF, Guillemin GJ. Drug Discov Today. 2016 Feb;21(2):315–24. PubMed Europe PMC Scholia
  18. Stress-related regulation of the kynurenine pathway: Relevance to neuropsychiatric and degenerative disorders. O’Farrell K, Harkin A. Neuropharmacology. 2017 Jan;112(Pt B):307–23. PubMed Europe PMC Scholia
  19. L-Tryptophan-kynurenine pathway enzymes are therapeutic target for neuropsychiatric diseases: Focus on cell type differences. Fujigaki H, Yamamoto Y, Saito K. Neuropharmacology. 2017 Jan;112(Pt B):264–74. PubMed Europe PMC Scholia
  20. Anthranilic Acid: A Potential Biomarker and Treatment Target for Schizophrenia. Oxenkrug G, van der Hart M, Roeser J, Summergrad P. Ann Psychiatry Ment Health. 2016;4(2):1059. PubMed Europe PMC Scholia
  21. Xanthurenic Acid Formation from 3-Hydroxykynurenine in the Mammalian Brain: Neurochemical Characterization and Physiological Effects. Sathyasaikumar KV, Tararina M, Wu HQ, Neale SA, Weisz F, Salt TE, et al. Neuroscience. 2017 Dec 26;367:85–97. PubMed Europe PMC Scholia
  22. Kynurenic Acid: The Janus-Faced Role of an Immunomodulatory Tryptophan Metabolite and Its Link to Pathological Conditions. Wirthgen E, Hoeflich A, Rebl A, Günther J. Front Immunol. 2018 Jan 10;8:1957. PubMed Europe PMC Scholia
  23. The kynurenine pathway: a finger in every pie. Savitz J. Mol Psychiatry. 2020 Jan;25(1):131–47. PubMed Europe PMC Scholia
  24. Microorganisms, Tryptophan Metabolism, and Kynurenine Pathway: A Complex Interconnected Loop Influencing Human Health Status. Dehhaghi M, Kazemi Shariat Panahi H, Guillemin GJ. Int J Tryptophan Res. 2019 Jun 19;12:1178646919852996. PubMed Europe PMC Scholia
  25. Coordination Complex Formation and Redox Properties of Kynurenic and Xanthurenic Acid Can Affect Brain Tissue Homeodynamics. Kubicova L, Hadacek F, Bachmann G, Weckwerth W, Chobot V. Antioxidants (Basel). 2019 Oct 11;8(10):476. PubMed Europe PMC Scholia
  26. Indoleamine and tryptophan 2,3-dioxygenases as important future therapeutic targets. Dolšak A, Gobec S, Sova M. Pharmacol Ther. 2021 May;221:107746. PubMed Europe PMC Scholia
  27. Pro-Inflammatory Cytokines: Potential Links between the Endocannabinoid System and the Kynurenine Pathway in Depression. Zádor F, Joca S, Nagy-Grócz G, Dvorácskó S, Szűcs E, Tömböly C, et al. Int J Mol Sci. 2021 May 31;22(11):5903. PubMed Europe PMC Scholia
  28. Immune Influencers in Action: Metabolites and Enzymes of the Tryptophan-Kynurenine Metabolic Pathway. Tanaka M, Tóth F, Polyák H, Szabó Á, Mándi Y, Vécsei L. Biomedicines. 2021 Jun 25;9(7):734. PubMed Europe PMC Scholia
  29. 3-hydroxy-L-kynurenamine is an immunomodulatory biogenic amine. Clement CC, D’Alessandro A, Thangaswamy S, Chalmers S, Furtado R, Spada S, et al. Nat Commun. 2021 Jul 21;12(1):4447. PubMed Europe PMC Scholia
  30. PD-L1 targeting and subclonal immune escape mediated by PD-L1 mutations in metastatic colorectal cancer. Stein A, Simnica D, Schultheiß C, Scholz R, Tintelnot J, Gökkurt E, et al. J Immunother Cancer. 2021 Jul;9(7):e002844. PubMed Europe PMC Scholia
  31. Markers of Immune Activation and Inflammation in Individuals With Postacute Sequelae of Severe Acute Respiratory Syndrome Coronavirus 2 Infection. Peluso MJ, Lu S, Tang AF, Durstenfeld MS, Ho HE, Goldberg SA, et al. J Infect Dis. 2021 Dec 1;224(11):1839–48. PubMed Europe PMC Scholia
  32. Kynurenine-3-monooxygenase (KMO): From its biological functions to therapeutic effect in diseases progression. Chen Y, Zhang J, Yang Y, Xiang K, Li H, Sun D, et al. J Cell Physiol. 2022 Dec;237(12):4339–55. PubMed Europe PMC Scholia
  33. The kynurenine pathway relates to post-acute COVID-19 objective cognitive impairment and PASC. Cysique LA, Jakabek D, Bracken SG, Allen-Davidian Y, Heng B, Chow S, et al. Ann Clin Transl Neurol. 2023 Aug;10(8):1338–52. PubMed Europe PMC Scholia
  34. Xanthurenic acid: A role in brain intercellular signaling. Maitre M, Taleb O, Jeltsch-David H, Klein C, Mensah-Nyagan AG. J Neurochem. 2024 Sep;168(9):2303–15. PubMed Europe PMC Scholia