Omega-6-fatty acids in senescence (WP5424)

Homo sapiens

Oxylipins, notably prostaglandins, are synthetized by senescent cells and then accumulate, promoting the senescent-associated secretory phenotype (Wiley et al., 2021). The prostaglandins are classified into three main groups, depending on the starting point of their biosynthesis. The serie-1-prostaglandins are derived from its precursor dihomo-γ-linolenic acid (DGLA). The serie-2-prostaglandins and serie-3-prostaglandins are derived from arachidonic acid (AA) and eicosapentae-noic acid (EPA), respectively (Noverr et al., 2003)

Authors

JuliaUM , Andreapascaud , Egon Willighagen , Mra1221 , Denise Slenter , and Nikita Krstevska

Activity

last edited

Discuss this pathway

Check for ongoing discussions or start your own.

Cited In

Are you planning to include this pathway in your next publication? See How to Cite and add a link here to your paper once it's online.

Organisms

Homo sapiens

Communities

Annotations

Pathway Ontology

fatty acid omega degradation pathway cellular senescence pathway lipid metabolic pathway

Participants

Label Type Compact URI Comment
15-keto-PGF2α Metabolite chebi:28442
Δ12-PGJ2 Metabolite chebi:28130 Synonym: 9-Deoxy-delta(9,12)-13,14-dihydro PGD2
12-oxo-10,11-dihydro-LTB4 Metabolite hmdb:HMDB0012498
12(S)-HETE Metabolite chebi:34146
IP3 Metabolite chebi:16595
15(S)-HETE Metabolite chebi:15558
15-keto-PGI2 Metabolite chebi:15556 =15-dehydro-Prostaglandin I2
10,11-dihydro-LTB4 Metabolite hmdb:HMDB0012504
15(R)-HpETE Metabolite chebi:82627
PGA2 Metabolite chebi:27820 PGA2=Prostaglandin A2
18-COOH-dinor-LTE4 Metabolite hmdb:HMDB0012607
10-HOTrE Metabolite pubchem.compound:54574843
5(S),6(S)-DiHETE Metabolite chebi:53026
HXA3 Metabolite chebi:36190
11α-hydroxy-9,15-dioxo-2,3,4,5,20-pentanor-19-carboxyprostanoic acid Metabolite chebi:73965
DH-PGJ2 Metabolite chebi:165318
18-COOH-dinor-LTB4 Metabolite chebi:63980
Adrenic acid (22:4,w6) Metabolite chebi:53487
12-oxo-LTB4 Metabolite pubchem.compound:5280876
N-acetyl- LTE4 Metabolite chebi:7210
EXC4 Metabolite chebi:63984
DH-15d-PGJ2 Metabolite pubchem.compound:16061095 =1a,1b-dihomo-15-deoxy-Δ12,14-prostaglandin J2
PGB1 Metabolite chebi:27624
TxB1 Metabolite pubchem.compound:71668258
Dihomo-y-linolenic acid (20:3,w6) Metabolite chebi:53486 = 8,11,14-Eicosatrienoic acid =DGLA
LXB4 Metabolite lipidmaps:LMFA03040002
15-epi-LXA4 Metabolite lipidmaps:LMFA03040010
EXD4 Metabolite chebi:63985
PGE1 Metabolite chebi:15544
15(S)-HpETE Metabolite chebi:15628
Tetracosapentaenoic acid (24:5,w-6) Metabolite hmdb:HMDB0006322
Bicyclo-PGE2 Metabolite chebi:89568
16-COOH-tetranor-LTE3 Metabolite chebi:74014
5(S),6(R)-DiHETE Metabolite pubchem.compound:5283160
15-keto-13,14-dihydro-PGE1 Metabolite chebi:134499
DH-PGF2α Metabolite chebi:183014
EXE4 Metabolite chebi:63986
TRXB3 Metabolite chebi:35032
13,14-dihydro-15-keto-PGD2 Metabolite chebi:72603 DK-PGD2
12(S)-HpETE Metabolite chebi:15626
15-epi-LXB4 Metabolite lipidmaps:LMFA03040007
PGH2 Metabolite chebi:15554 PGH2 is the abbreviation of PGG2
20-COOH-LTB4 Metabolite chebi:27562
13,14-dihydro-PGF2α Metabolite chebi:88346
5(S)-HETE Metabolite chebi:28209
DH-PGD2 Metabolite lipidmaps:LMFA03010156
DH-PGE2 Metabolite chebi:185711
LGE2 Metabolite chebi:34821 Levuglandin E2
LTF4 Metabolite chebi:27491
6-trans-LTB4 Metabolite chebi:63981
y-linolenic acid (18:3,w6) Metabolite chebi:28661 GLA(18:3 w6)
Ca2+ Metabolite chebi:29108
PGI2 Metabolite chebi:15552 Synonym for PGI2 is 'Prostacyclin'
LGD2 Metabolite chebi:34820 Levuglandin D2
9α,11α-PGF2α Metabolite chebi:15553
9α,11β-PGF2α Metabolite chebi:15553
13,14-dihydro-15-keto-PGE2 Metabolite chebi:15550 PGEM= Metabolites downstream of PGE2
EXA4 Metabolite chebi:63983
Eicosadienoic acid (20:2,w6) Metabolite chebi:73731
PGG1 Metabolite chebi:133739
PGC1 Metabolite chebi:15546
Tetranor-PGDM Metabolite lipidmaps:LMFA03010221
PGF1α Metabolite chebi:28852
TRXA3 Metabolite chebi:36203
PGA1 Metabolite cas:14152-28-4
Linoleic acid (18:2,w6) Metabolite chebi:17351 LA (18:2 w6)
cAMP Metabolite chebi:17489
15-keto-PGD2 Metabolite chebi:15557
HXB3 Metabolite chebi:34784
Arachidonic Acid (20:4,w6) Metabolite chebi:15843
2,3 dinor-6-keto-PGF1α Metabolite chebi:73944
6-keto-PGF1α Metabolite chebi:28158
DH-15d-Δ12,14-PGD2 Metabolite chebi:165317
5(S),6(S)-epoxy-15(S)-HETE Metabolite chebi:64095
13,14-dihydro-15-keto-PGA2 Metabolite chebi:89315 8: Prostanoid Metabolites as Biomarkers in Human Disease Helena Idborg; Sven-Christian Pawelzik. 2022. PubMed 36005592.
Ca2+ Metabolite chebi:29108 calcium
9-deoxy-Δ12-PGD2* Metabolite chebi:175297
15-keto-13,14-dihydro-PGF2α Metabolite chebi:63976
LXA4 Metabolite lipidmaps:LMFA03040001
11-dehydro-TxB2 Metabolite chebi:28667
6-keto-PGE1 Metabolite chebi:28269
PGE2 Metabolite chebi:15551
Osbond acid (22:5,w6) Metabolite chebi:53488 =docosapentaenoic acid (DPAω6, 22:5)
Tetracosatetraenoic acid (24:4, w-6) Metabolite hmdb:HMDB0006246
20-COOH-LTE4 Metabolite pubchem.compound:53481508
IP3 Metabolite chebi:16595
19-OH-PGE1 Metabolite cas:55123-67-6
PGD2 Metabolite chebi:15555
PGH1 Metabolite chebi:91133
PGJ2 Metabolite chebi:27485
15-keto-PGE1 Metabolite cas:22973-19-9
PGD1 Metabolite chebi:27696
TxA Metabolite chebi:15627
PGG2 Metabolite chebi:27647 Prostaglandin G2 is abbreviated as PGG2
Δ6-trans-12-epi-LTB4 Metabolite chebi:63982
15-deoxy-Δ12,14-PGJ2 Metabolite chebi:34159 =15d-PGJ2
19-OH-PGE2 Metabolite chebi:165313
15-keto-PGE2 Metabolite chebi:15547
PGC2 Metabolite chebi:27555 PGC2=Prostaglandin C2
PGB2 Metabolite chebi:28099 PGB2=Prostaglandin B2
TxB Metabolite chebi:28728
cAMP Metabolite chebi:17489 PGI2 binding to the associated IP receptor (coupled to Gs) leads to an activation of the AC and thus to an increase of intracellular cAMP. Its elevation downregulates store-mediated calcium entry, calcium mobilization and secretion, as well as platelet adhesion to subendothelial collagen via integrin α2β1. The cAMP increase further results in an activation of protein kinase-A (PKA) and in principle, in an inhibition of platelet activation. Analogous to cAMP, PKA activity has been associated with a reduced Ca2+ release from intra-platelet stores
Membrane phospholipids Metabolite chebi:16247
19-OH-6-keto-PGF1α Metabolite chebi:172589
6,15-Diketo-13,14-dihydro-PGF1α Metabolite chebi:72595
2,3-dinor-11β-PGF2α Metabolite chebi:165323
2,3-Dinor-TxB2 Metabolite chebi:89991
15-deoxy-Δ12,14-PGD2 Metabolite chebi:63999 =15d-PGJ2
LTB4 Metabolite chebi:15647
5(S)-HpETE Metabolite hmdb:HMDB11135
LTD4 Metabolite chebi:28666
LTA4 Metabolite chebi:15651
LTE4 Metabolite chebi:15650
LTC4 Metabolite chebi:16978
DH-PGI2 Metabolite chebi:165328
ROS Metabolite chebi:26523
20-OH-LTB4 Metabolite chebi:15646
8-iso-15-keto-PGF2α Metabolite chebi:175523
2,3-dinor-8-IsoPGF2α Metabolite pubchem.compound:9548881
8-iso-13,14-dihydro-15-keto-PGF2α Metabolite lipidmaps:LMFA03110004
15-F2-IsoP Metabolite chebi:187201 = 8-iso-PGF2a
15-D2-IsoP Metabolite lipidmaps:LMFA03110099 Iso-Prostaglandin H2
15-J2-IsoP Metabolite lipidmaps:LMFA03110101 Iso-Prostaglandin H2
15-A2-IsoP Metabolite lipidmaps:LMFA03110138 Iso-Prostaglandin H2
12-F2-IsoP Metabolite lipidmaps:LMFA03110042 Iso-Prostaglandin H2
12-D2-IsoP Metabolite lipidmaps:LMFA03110085 Iso-Prostaglandin H2
12-J2-IsoP Metabolite lipidmaps:LMFA03110087 Iso-Prostaglandin H2
12-15d-J2-IsoP Metabolite lipidmaps:LMFA03110090 Iso-Prostaglandin H2
12-E2-IsoP Metabolite lipidmaps:LMFA03110190 Iso-Prostaglandin H2
12-A2-IsoP Metabolite lipidmaps:LMFA03110248 Iso-Prostaglandin H2
8-F2-IsoP Metabolite lipidmaps:8-F2t-IsoP
8-D2-IsoP Metabolite lipidmaps:LMFA03110057 Iso-Prostaglandin H2
8-J2-IsoP Metabolite lipidmaps:LMFA03110059 Iso-Prostaglandin H2
8-15d-J2-IsoP Metabolite lipidbank:LMFA03110062 Iso-Prostaglandin H2
8-E2-IsoP Metabolite lipidmaps:LMFA03110003 Iso-Prostaglandin H2
5-F2-IsoP Metabolite lipidmaps:LMFA03110039 Iso-Prostaglandin H2
5-D2-IsoP Metabolite lipidmaps:LMFA03110070 Iso-Prostaglandin H2
5-J2-IsoP Metabolite lipidmaps:LMFA03110072 Iso-Prostaglandin H2
5-15d-J2-IsoP Metabolite lipidmaps:LMFA03110075 Iso-Prostaglandin H2
5-E2-IsoP Metabolite lipidmaps:LMFA03110174 Iso-Prostaglandin H2
5-A2-IsoP Metabolite lipidmaps:LMFA03110257 Iso-Prostaglandin H2
7-DH-F2-IsoP Metabolite lipidmaps:LMFA03110299
14-DH-F2-IsoP Metabolite lipidmaps:LMFA03110331
10-DH-F2-IsoP Metabolite lipidmaps:LMFA03110315
17-DH-F2-IsoP Metabolite lipidmaps:LMFA03110347
11-deoxy-13,14-dihydro-15-keto-11β,16-cyclo-PGE1 Metabolite cas:1283861-32-4
Δ13-reductase GeneProduct ensembl:ENSG00000140043 =15-oxoprostaglandin-Δ13-reductase
p53 GeneProduct ensembl:ENSG00000141510
CYP4F8 GeneProduct ensembl:ENSG00000186526
PTGES GeneProduct ensembl:ENSG00000148344 =microsomal prostaglandin E synthase 1 (mPGES-1)
PGFS GeneProduct ensembl:ENSG00000157870 =Prostaglandin F synthase
15-ketoprostaglandin reductase GeneProduct ensembl:ENSG00000140043
NAT1 GeneProduct ensembl:ENSG00000171428
ALOX15 GeneProduct ensembl:ENSG00000161905
SLCO2A1 GeneProduct ensembl:ENSG00000174640
PGES GeneProduct ensembl:ENSG00000148344 =prostaglandin E synthase
γ-GT GeneProduct ensembl:ENSG00000100031 Identical to GGT1
Type your comment here
TBXAS1 GeneProduct ensembl:ENSG00000059377 =CYP5A1
Carboxypeptidase A GeneProduct eccode:3.4.17.1
GPX1 GeneProduct ensembl:ENSG00000233276
ALOXE3 GeneProduct ensembl:ENSG00000179148
2,4-dienoyl-CoA reductase GeneProduct ensembl:ENSG00000104325
EPHX2 GeneProduct ensembl:ENSG00000120915
PGDS GeneProduct ensembl:ENSG00000107317 =Prostaglandin D synthase
15-ketoprostaglandin reductase GeneProduct ensembl:ENSG00000140043
ABCC4 GeneProduct ensembl:ENSG00000125257
PG-9KR GeneProduct ensembl:ENSG00000159228 PG-9KR= Prostaglandin-9-ketoreductase
DPEP GeneProduct eccode:1.3.4.13
AKR1C3 GeneProduct ensembl:ENSG00000196139 =aldo-keto reductase family 1 member C3
CYP4F8 GeneProduct ensembl:ENSG00000186526
H-PGDS GeneProduct ensembl:ENSG00000163106
PGDS GeneProduct ensembl:ENSG00000107317
PGE synthase GeneProduct ensembl:ENSG00000148344
TXAS GeneProduct ensembl:ENSG00000059377 =Thromboxane synthase
CYP4F8 GeneProduct ensembl:ENSG00000186526 =cytochrome P450 family 4 subfamily F member 8
LTC4S GeneProduct ensembl:ENSG00000213316
NAT2 GeneProduct ensembl:ENSG00000156006
ALOX15B GeneProduct ensembl:ENSG00000179593
p21 GeneProduct ensembl:ENSG00000124762
GPX1 GeneProduct ensembl:ENSG00000233276
PGES GeneProduct ensembl:ENSG00000148344 =Prostaglandin E synthase
ALOX12 GeneProduct ensembl:ENSG00000108839
ALOX12 GeneProduct ensembl:ENSG00000108839
HPGD GeneProduct ensembl:ENSG00000164120 15-PGDH=15-hydroxy-prostaglandin dehydrogenase
L-PGDS GeneProduct ensembl:ENSG00000107317
CYP8A1 GeneProduct ensembl:ENSG00000124212 =prostaglandin I2 synthase =PTGIS
AKR1B1 GeneProduct ensembl:ENSG00000085662
AKR1C3 GeneProduct ensembl:ENSG00000196139 =NADPH-dependent PGD2 11-ketoreductase =aldo-keto reductase family 1 member C3 =EC 1.1.1.188
GSTP1 GeneProduct ensembl:ENSG00000084207
GGT1 GeneProduct ensembl:ENSG00000100031
PTGES2 GeneProduct ensembl:ENSG00000148334 =microsomal prostaglandin E synthase 2 (PTGES2)
PTGES3 GeneProduct ensembl:ENSG00000110958 =prostaglandin E synthase 3 (cPGES)
AKR1B1 GeneProduct ensembl:ENSG00000085662 =aldo-keto reductase family 1 member B
p38 MAPK GeneProduct ensembl:ENSG00000185386
11-hydroxythromboxane B2 dehydrogenase GeneProduct ensembl:ENSG00000165092 11-hydroxythromboxane B2 dehydrogenase is the same as cytosolic aldehyde dehydrogenase
Type your comment here
PTGS1 GeneProduct ensembl:ENSG00000095303 Prostaglandin-endoperoxide synthase 1 =cyclooxygenase (COX)
PTGS2 GeneProduct ensembl:ENSG00000073756 prostaglandin-endoperoxide synthase 2 =cyclooxygenase (COX)
ELOVL2 GeneProduct ensembl:ENSG00000197977 fatty acid elongase 2
ELOVL5 GeneProduct ensembl:ENSG00000012660 fatty acid elongase 5
FADS2 GeneProduct ensembl:ENSG00000134824 gene=FADS2 Δ6-Desaturase
FADS1 GeneProduct ensembl:ENSG00000149485 Δ5-Desaturase
ELOVL5 GeneProduct ensembl:ENSG00000012660 fatty acid elongase 5
Δ13-reductase GeneProduct ensembl:ENSG00000140043 =15-oxo-prostaglandin Δ13-reductase
Δ13-reductase GeneProduct eccode:1.3.1.48 =15-oxoprostaglandin-Δ13-reductase
DPEP1 GeneProduct ensembl:ENSG00000015413 =Human microsomal dipeptidase (MDP, formerly referred to as dehydropeptidase-I or renal dipeptidase) [EC 3.4.13.11]
GGT1 GeneProduct ensembl:ENSG00000100031
DPEP2 GeneProduct ensembl:ENSG00000167261
LTC4S GeneProduct ensembl:ENSG00000213316
GGT5 GeneProduct ensembl:ENSG00000099998 =gamma-glutamyltransferase 5
LTA4H GeneProduct ensembl:ENSG00000111144
ALOX5 GeneProduct ensembl:ENSG00000012779 =arachidonate 5-lipoxygenase
FLAP GeneProduct ensembl:ENSG00000132965 gene = ALOX5AP FLAP= 5-lipoxygenase activating protein
HPGD GeneProduct ensembl:ENSG00000164120 15-PGDH=15-hydroxy-prostaglandin dehydrogenase
HPGD GeneProduct ensembl:ENSG00000164120 15-PGDH=15-hydroxy-prostaglandin dehydrogenase
HPGD GeneProduct ensembl:ENSG00000164120 15-PGDH=15-hydroxy-prostaglandin dehydrogenase
SIRT1 GeneProduct ensembl:ENSG00000096717
p53 GeneProduct ensembl:ENSG00000141510 Gene: TP53
p53 GeneProduct ensembl:ENSG00000141510
p21 GeneProduct ensembl:ENSG00000124762 Gene: CDKN1A
Rb GeneProduct ensembl:ENSG00000139687
Rb GeneProduct ensembl:ENSG00000139687
p53 GeneProduct ensembl:ENSG00000141510
HPGD GeneProduct ensembl:ENSG00000164120 15-PGDH=15-hydroxy-prostaglandin dehydrogenase
ELOVL2 GeneProduct ensembl:ENSG00000197977 fatty acid elongase 2
FADS2 GeneProduct ensembl:ENSG00000134824 gene=FADS2 Δ6-Desaturase
ALOX15 GeneProduct ensembl:ENSG00000161905
PTGS2 GeneProduct ensembl:ENSG00000073756
ALOX5 GeneProduct ensembl:ENSG00000012779 =arachidonate 5-lipoxygenase
ALOX15B GeneProduct ensembl:ENSG00000179593
ALOX15B GeneProduct ensembl:ENSG00000179593
ALOX15 GeneProduct ensembl:ENSG00000161905
ALOX15 GeneProduct ensembl:ENSG00000161905
GSH Protein kegg.genes:C00051 Cofactor
Cytosolic phospholipase A2 Protein uniprot:P47712
Cytosolic phospholipase A2 Protein uniprot:P47712
CysLT1R Protein ensembl:ENSG00000173198 =cysteinyl leukotriene type 1 receptor
PAI-1 Protein ensembl:ENSG00000106366 Gene: SERPINE1
Cytosolic phospholipase A2 Protein uniprot:P47712

References

  1. Prostaglandin hydroperoxidase, an integral part of prostaglandin endoperoxide synthetase from bovine vesicular gland microsomes. Ohki S, Ogino N, Yamamoto S, Hayaishi O. J Biol Chem. 1979 Feb 10;254(3):829–36. PubMed Europe PMC Scholia
  2. Metabolism of prostaglandins E, A, and C in serum. Polet H, Levine L. J Biol Chem. 1975 Jan 25;250(2):351–7. PubMed Europe PMC Scholia
  3. Letting the computer do the work. Sparks SM. Am J Nurs. 1978 Apr;78(4):645–7. PubMed Europe PMC Scholia
  4. Recirculation of prostacyclin (PGI2) in the dog. Dusting GJ, Moncada S, Vane JR. Br J Pharmacol. 1978 Oct;64(2):315–20. PubMed Europe PMC Scholia
  5. Introduction to the biosynthesis and metabolism of prostaglandins. Piper PJ. Postgrad Med J. 1977 Nov;53(625):643–6. PubMed Europe PMC Scholia
  6. Purification of prostaglandin endoperoxide synthetase from bovine vesicular gland microsomes. Miyamoto T, Ogino N, Yamamoto S, Hayaishi O. J Biol Chem. 1976 May 10;251(9):2629–36. PubMed Europe PMC Scholia
  7. On the metabolism of prostaglandin E1 administered intravenously to human volunteers. Peskar BA, Cawello W, Rogatti W, Rudofsky G. J Physiol Pharmacol. 1991 Sep;42(3):327–31. PubMed Europe PMC Scholia
  8. Effect of dietary calcium on renal prostaglandins. Katayama S, Maruno Y, Itabashi A, Inaba M, Akabane S, Tanaka K, et al. Prostaglandins Leukot Essent Fatty Acids. 1991 Mar;42(3):197–200. PubMed Europe PMC Scholia
  9. Leukotriene E4 elimination and metabolism in normal human subjects. Sala A, Voelkel N, Maclouf J, Murphy RC. J Biol Chem. 1990 Dec 15;265(35):21771–8. PubMed Europe PMC Scholia
  10. Prostaglandin E2 metabolism in the human fetal membranes. Cheung PY, Challis JR. Am J Obstet Gynecol. 1989 Dec;161(6 Pt 1):1580–5. PubMed Europe PMC Scholia
  11. Eicosanoid nomenclature. Smith W. Prostaglandins. 1989 Jul;38(1):125–33. PubMed Europe PMC Scholia
  12. Purification and characterization of human microsomal dipeptidase. Adachi H, Kubota I, Okamura N, Iwata H, Tsujimoto M, Nakazato H, et al. J Biochem. 1989 Jun;105(6):957–61. PubMed Europe PMC Scholia
  13. Metabolism of leukotrienes. Hammarström S, Orning L, Bernström K. Mol Cell Biochem. 1985 Nov;69(1):7–16. PubMed Europe PMC Scholia
  14. Stereospecific conversion of prostaglandin D2 to (5Z,13E)-(15S)-9 alpha-11 beta,15-trihydroxyprosta-5,13-dien-1-oic acid (9 alpha,11 beta-prostaglandin F2) and of prostaglandin H2 to prostaglandin F2 alpha by bovine lung prostaglandin F synthase. Watanabe K, Iguchi Y, Iguchi S, Arai Y, Hayaishi O, Roberts LJ 2nd. Proc Natl Acad Sci U S A. 1986 Mar;83(6):1583–7. PubMed Europe PMC Scholia
  15. Identification of 11-dehydro-TXB2 as a suitable parameter for monitoring thromboxane production in the human. Westlund P, Granström E, Kumlin M, Nordenström A. Prostaglandins. 1986 May;31(5):929–60. PubMed Europe PMC Scholia
  16. Transformation of prostaglandin D2 to 9 alpha, 11 beta-(15S)-trihydroxyprosta-(5Z,13E)-dien-1-oic acid (9 alpha, 11 beta-prostaglandin F2): a unique biologically active prostaglandin produced enzymatically in vivo in humans. Liston TE, Roberts LJ 2nd. Proc Natl Acad Sci U S A. 1985 Sep;82(18):6030–4. PubMed Europe PMC Scholia
  17. 6-Keto prostaglandin F1 alpha production in endothelial-cell cultures in response to normal and diabetic human serum. Patel MK, Evans CE, McEvoy FA. Biosci Rep. 1983 Jan;3(1):53–60. PubMed Europe PMC Scholia
  18. Clinical pharmacology and potential of prostacyclin. Lewis PJ, Dollery CT. Br Med Bull. 1983 Jul;39(3):281–4. PubMed Europe PMC Scholia
  19. Review: 6 keto-prostaglandin-E1. Moore PK, Griffiths RJ. Prostaglandins. 1983 Oct;26(4):509–17. PubMed Europe PMC Scholia
  20. Albumin-catalyzed metabolism of prostaglandin D2. Identification of products formed in vitro. Fitzpatrick FA, Wynalda MA. J Biol Chem. 1983 Oct 10;258(19):11713–8. PubMed Europe PMC Scholia
  21. Formation and metabolism of prostaglandins in the kidney. Anggård E, Oliw E. Kidney Int. 1981 Jun;19(6):771–80. PubMed Europe PMC Scholia
  22. Dihomo-prostaglandins and -thromboxane. A prostaglandin family from adrenic acid that may be preferentially synthesized in the kidney. Sprecher H, VanRollins M, Sun F, Wyche A, Needleman P. J Biol Chem. 1982 Apr 10;257(7):3912–8. PubMed Europe PMC Scholia
  23. 6-keto PGE1: a possible metabolite of prostacyclin having platelet antiaggregatory effects. Quilley CP, McGiff JC, Lee WH, Sun FF, Wong PY. Hypertension. 1980;2(4):524–8. PubMed Europe PMC Scholia
  24. Metabolism of prostacyclin by 9-hydroxyprostaglandin dehydrogenase in human platelets. Formation of a potent inhibitor of platelet aggregation and enzyme purification. Wong PY, Lee WH, Chao PH, Reiss RF, McGiff JC. J Biol Chem. 1980 Oct 10;255(19):9021–4. PubMed Europe PMC Scholia
  25. Metabolism of prostacyclin and 6-keto-prostaglandin F1 alpha in man. Rosenkranz B, Fischer C, Weimer KE, Frölich JC. J Biol Chem. 1980 Nov 10;255(21):10194–8. PubMed Europe PMC Scholia
  26. Prostacyclin production during pregnancy: comparison of production during normal pregnancy and pregnancy complicated by hypertension. Goodman RP, Killam AP, Brash AR, Branch RA. Am J Obstet Gynecol. 1982 Apr 1;142(7):817–22. PubMed Europe PMC Scholia
  27. Radioimmunologic determination of 15-keto-13,14-dihydro-PGE2: a method for its stable degradation product, 11-deoxy-15-keto-13,14-dihydro-11 beta, 16 xi-cyclo-PGE2. Granström E, Fitzpatrick FA, Kindahl H. Methods Enzymol. 1982;86:306–20. PubMed Europe PMC Scholia
  28. The stability of 13,14-dihydro-15 keto-PGE2. Fitzpatrick FA, Aguirre R, Pike JE, Lincoln FH. Prostaglandins. 1980 Jun;19(6):917–31. PubMed Europe PMC Scholia
  29. Feminism, social policy, and long-acting contraception. Nelson HL, Nelson JL. Hastings Cent Rep. 1995;25(1):S30-2. PubMed Europe PMC Scholia
  30. Prostaglandin B2-induced pulmonary hypertension is mediated by TxA2/PGH2 receptor stimulation. Liu F, Orr JA, Wu JY. Am J Physiol. 1994 Nov;267(5 Pt 1):L602-8. PubMed Europe PMC Scholia
  31. Identification of 19 (R)-OH prostaglandin E2 as a selective prostanoid EP2-receptor agonist. Woodward DF, Protzman CE, Krauss AH, Williams LS. Prostaglandins. 1993 Oct;46(4):371–83. PubMed Europe PMC Scholia
  32. Prostaglandin-metabolizing enzymes during pregnancy: characterization of NAD(+)-dependent prostaglandin dehydrogenase, carbonyl reductase, and cytochrome P450-dependent prostaglandin omega-hydroxylase. Okita RT, Okita JR. Crit Rev Biochem Mol Biol. 1996 Apr;31(2):101–26. PubMed Europe PMC Scholia
  33. Biological actions of delta 12-prostaglandin J2. Negishi M, Koizumi T, Ichikawa A. J Lipid Mediat Cell Signal. 1995 Oct;12(2–3):443–8. PubMed Europe PMC Scholia
  34. p38 mitogen-activated protein kinase phosphorylates cytosolic phospholipase A2 (cPLA2) in thrombin-stimulated platelets. Evidence that proline-directed phosphorylation is not required for mobilization of arachidonic acid by cPLA2. Kramer RM, Roberts EF, Um SL, Börsch-Haubold AG, Watson SP, Fisher MJ, et al. J Biol Chem. 1996 Nov 1;271(44):27723–9. PubMed Europe PMC Scholia
  35. In vivo formation of prostaglandin E1 and prostaglandin E2 in atopic dermatitis. Leonhardt A, Krauss M, Gieler U, Schweer H, Happle R, Seyberth HW. Br J Dermatol. 1997 Mar;136(3):337–40. PubMed Europe PMC Scholia
  36. Levuglandin E2-protein adducts in human plasma and vasculature. Salomon RG, Subbanagounder G, O’Neil J, Kaur K, Smith MA, Hoff HF, et al. Chem Res Toxicol. 1997 May;10(5):536–45. PubMed Europe PMC Scholia
  37. Evidence for the formation of F3-isoprostanes during peroxidation of eicosapentaenoic acid. Nourooz-Zadeh J, Halliwell B, Anggård EE. Biochem Biophys Res Commun. 1997 Jul 18;236(2):467–72. PubMed Europe PMC Scholia
  38. Measurements of urinary prostaglandins in young ovulatory women during the menstrual cycle and in postmenopausal women. Farker K, Schweer H, Vollandt R, Nassr N, Nagel U, Seyberth HW, et al. Prostaglandins. 1997 Sep;54(3):655–64. PubMed Europe PMC Scholia
  39. Metabolism of 8-iso-prostaglandin F2alpha. Basu S. FEBS Lett. 1998 May 22;428(1–2):32–6. PubMed Europe PMC Scholia
  40. Effects of prostaglandin E1 metabolites on the induction of arterial thromboresistance. Sinzinger H, Neumann I, O’Grady J, Rogatti W, Peskar BA. Prostaglandins Other Lipid Mediat. 1998 Apr;55(5–6):265–75. PubMed Europe PMC Scholia
  41. Radioimmunoassay of 8-iso-prostaglandin F2alpha: an index for oxidative injury via free radical catalysed lipid peroxidation. Basu S. Prostaglandins Leukot Essent Fatty Acids. 1998 Apr;58(4):319–25. PubMed Europe PMC Scholia
  42. Endogenous glutathione conjugates: occurrence and biological functions. Wang W, Ballatori N. Pharmacol Rev. 1998 Sep;50(3):335–56. PubMed Europe PMC Scholia
  43. cDNA cloning, expression and characterization of human prostaglandin F synthase. Suzuki-Yamamoto T, Nishizawa M, Fukui M, Okuda-Ashitaka E, Nakajima T, Ito S, et al. FEBS Lett. 1999 Dec 3;462(3):335–40. PubMed Europe PMC Scholia
  44. Close kinship of human 20alpha-hydroxysteroid dehydrogenase gene with three aldo-keto reductase genes. Nishizawa M, Nakajima T, Yasuda K, Kanzaki H, Sasaguri Y, Watanabe K, et al. Genes Cells. 2000 Feb;5(2):111–25. PubMed Europe PMC Scholia
  45. Identification of CYP4F8 in human seminal vesicles as a prominent 19-hydroxylase of prostaglandin endoperoxides. Bylund J, Hidestrand M, Ingelman-Sundberg M, Oliw EH. J Biol Chem. 2000 Jul 21;275(29):21844–9. PubMed Europe PMC Scholia
  46. Prostaglandin E2 synthesis and metabolism in burn injury and trauma. Hahn EL, Gamelli RL. J Trauma. 2000 Dec;49(6):1147–54. PubMed Europe PMC Scholia
  47. Cyclopentenone prostaglandins: new insights on biological activities and cellular targets. Straus DS, Glass CK. Med Res Rev. 2001 May;21(3):185–210. PubMed Europe PMC Scholia
  48. Determination of 9alpha, 11beta prostaglandin F2 in human urine. combination of solid-phase extraction and radioimmunoassay. Mucha, Riutta A. Prostaglandins Leukot Essent Fatty Acids. 2001;65(5–6):271–80. PubMed Europe PMC Scholia
  49. Polyunsaturated fatty acid synthesis: what will they think of next? Wallis JG, Watts JL, Browse J. Trends Biochem Sci. 2002 Sep;27(9):467. PubMed Europe PMC Scholia
  50. Prostaglandin F synthase. Watanabe K. Prostaglandins Other Lipid Mediat. 2002 Aug;68–69:401–7. PubMed Europe PMC Scholia
  51. Carboxypeptidase A-catalyzed direct conversion of leukotriene C4 to leukotriene F4. Reddanna P, Prabhu KS, Whelan J, Reddy CC. Arch Biochem Biophys. 2003 May 15;413(2):158–63. PubMed Europe PMC Scholia
  52. Identification of two additional members of the membrane-bound dipeptidase family. Habib GM, Shi ZZ, Cuevas AA, Lieberman MW. FASEB J. 2003 Jul;17(10):1313–5. PubMed Europe PMC Scholia
  53. Identification of a novel class of endoperoxides from arachidonate autoxidation. Yin H, Morrow JD, Porter NA. J Biol Chem. 2004 Jan 30;279(5):3766–76. PubMed Europe PMC Scholia
  54. Prostaglandin synthases: recent developments and a novel hypothesis. Helliwell RJA, Adams LF, Mitchell MD. Prostaglandins Leukot Essent Fatty Acids. 2004 Feb;70(2):101–13. PubMed Europe PMC Scholia
  55. 5-Lipoxygenase Pathway, Dendritic Cells, and Adaptive Immunity. Hedi H, Norbert G. J Biomed Biotechnol. 2004;2004(2):99–105. PubMed Europe PMC Scholia
  56. Increased urinary F(2)-isoprostanes levels in the patients with Alzheimer’s disease. Kim KM, Jung BH, Paeng KJ, Kim I, Chung BC. Brain Res Bull. 2004 Jul 30;64(1):47–51. PubMed Europe PMC Scholia
  57. 5-Lipoxygenase regulates senescence-like growth arrest by promoting ROS-dependent p53 activation. Catalano A, Rodilossi S, Caprari P, Coppola V, Procopio A. EMBO J. 2005 Jan 12;24(1):170–9. PubMed Europe PMC Scholia
  58. Distinguishing levuglandins produced through the cyclooxygenase and isoprostane pathways. Salomon RG. Chem Phys Lipids. 2005 Mar;134(1):1–20. PubMed Europe PMC Scholia
  59. On the mechanism of biosynthesis of 19-hydroxyprostaglandins of human seminal fluid and expression of cyclooxygenase-2, PGH 19-hydroxylase (CYP4F8) and microsomal PGE synthase-1 in seminal vesicles and vas deferens. Stark K, Bylund J, Törmä H, Sahlén G, Oliw EH. Prostaglandins Other Lipid Mediat. 2005 Jan;75(1–4):47–64. PubMed Europe PMC Scholia
  60. Delta12-prostaglandin D2 is a potent and selective CRTH2 receptor agonist and causes activation of human eosinophils and Th2 lymphocytes. Gazi L, Gyles S, Rose J, Lees S, Allan C, Xue L, et al. Prostaglandins Other Lipid Mediat. 2005 Jan;75(1–4):153–67. PubMed Europe PMC Scholia
  61. Urinary 8-epi-PGF2alpha and its endogenous beta-oxidation products (2,3-dinor and 2,3-dinor-5,6-dihydro) as biomarkers of total body oxidative stress. Nourooz-Zadeh J, Cooper MB, Ziegler D, Betteridge DJ. Biochem Biophys Res Commun. 2005 May 13;330(3):731–6. PubMed Europe PMC Scholia
  62. Microsomal prostaglandin E synthase-1: the inducible synthase for prostaglandin E2. Sampey AV, Monrad S, Crofford LJ. Arthritis Res Ther. 2005;7(3):114–7. PubMed Europe PMC Scholia
  63. The biochemistry of the isoprostane, neuroprostane, and isofuran Pathways of lipid peroxidation. Roberts LJ 2nd, Fessel JP, Davies SS. Brain Pathol. 2005 Apr;15(2):143–8. PubMed Europe PMC Scholia
  64. Prostaglandin E2 synthesis and secretion: the role of PGE2 synthases. Park JY, Pillinger MH, Abramson SB. Clin Immunol. 2006 Jun;119(3):229–40. PubMed Europe PMC Scholia
  65. Plasminogen activator inhibitor-1 is a critical downstream target of p53 in the induction of replicative senescence. Kortlever RM, Higgins PJ, Bernards R. Nat Cell Biol. 2006 Aug;8(8):877–84. PubMed Europe PMC Scholia
  66. Arachidonate-derived dihomoprostaglandin production observed in endotoxin-stimulated macrophage-like cells. Harkewicz R, Fahy E, Andreyev A, Dennis EA. J Biol Chem. 2007 Feb 2;282(5):2899–910. PubMed Europe PMC Scholia
  67. Novel cyclooxygenase-catalyzed bioactive prostaglandin F2alpha from physiology to new principles in inflammation. Basu S. Med Res Rev. 2007 Jul;27(4):435–68. PubMed Europe PMC Scholia
  68. Metabolism of adrenic acid to vasodilatory 1alpha,1beta-dihomo-epoxyeicosatrienoic acids by bovine coronary arteries. Yi XY, Gauthier KM, Cui L, Nithipatikom K, Falck JR, Campbell WB. Am J Physiol Heart Circ Physiol. 2007 May;292(5):H2265-74. PubMed Europe PMC Scholia
  69. PRAK is essential for ras-induced senescence and tumor suppression. Sun P, Yoshizuka N, New L, Moser BA, Li Y, Liao R, et al. Cell. 2007 Jan 26;128(2):295–308. PubMed Europe PMC Scholia
  70. Identification of a novel prostaglandin reductase reveals the involvement of prostaglandin E2 catabolism in regulation of peroxisome proliferator-activated receptor gamma activation. Chou WL, Chuang LM, Chou CC, Wang AHJ, Lawson JA, FitzGerald GA, et al. J Biol Chem. 2007 Jun 22;282(25):18162–72. PubMed Europe PMC Scholia
  71. Normal or stress-induced fibroblast senescence involves COX-2 activity. Zdanov S, Bernard D, Debacq-Chainiaux F, Martien S, Gosselin K, Vercamer C, et al. Exp Cell Res. 2007 Aug 15;313(14):3046–56. PubMed Europe PMC Scholia
  72. Biosynthesis and metabolism of leukotrienes. Murphy RC, Gijón MA. Biochem J. 2007 Aug 1;405(3):379–95. PubMed Europe PMC Scholia
  73. Membrane prostaglandin E synthase-1: a novel therapeutic target. Samuelsson B, Morgenstern R, Jakobsson PJ. Pharmacol Rev. 2007 Sep;59(3):207–24. PubMed Europe PMC Scholia
  74. Tetranor PGDM, an abundant urinary metabolite reflects biosynthesis of prostaglandin D2 in mice and humans. Song WL, Wang M, Ricciotti E, Fries S, Yu Y, Grosser T, et al. J Biol Chem. 2008 Jan 11;283(2):1179–88. PubMed Europe PMC Scholia
  75. Eoxins are proinflammatory arachidonic acid metabolites produced via the 15-lipoxygenase-1 pathway in human eosinophils and mast cells. Feltenmark S, Gautam N, Brunnström A, Griffiths W, Backman L, Edenius C, et al. Proc Natl Acad Sci U S A. 2008 Jan 15;105(2):680–5. PubMed Europe PMC Scholia
  76. Human biochemistry of the isoprostane pathway. Milne GL, Yin H, Morrow JD. J Biol Chem. 2008 Jun 6;283(23):15533–7. PubMed Europe PMC Scholia
  77. Isoprostanes and phytoprostanes: Bioactive lipids. Durand T, Bultel-Poncé V, Guy A, El Fangour S, Rossi JC, Galano JM. Biochimie. 2011 Jan;93(1):52–60. PubMed Europe PMC Scholia
  78. Nonenzymatic free radical-catalyzed generation of 15-deoxy-Δ(12,14)-prostaglandin J₂-like compounds (deoxy-J₂-isoprostanes) in vivo. Hardy KD, Cox BE, Milne GL, Yin H, Roberts LJ 2nd. J Lipid Res. 2011 Jan;52(1):113–24. PubMed Europe PMC Scholia
  79. Catalytic mechanism of the primary human prostaglandin F2α synthase, aldo-keto reductase 1B1--prostaglandin D2 synthase activity in the absence of NADP(H). Nagata N, Kusakari Y, Fukunishi Y, Inoue T, Urade Y. FEBS J. 2011 Apr;278(8):1288–98. PubMed Europe PMC Scholia
  80. p38MAPK is a novel DNA damage response-independent regulator of the senescence-associated secretory phenotype. Freund A, Patil CK, Campisi J. EMBO J. 2011 Apr 20;30(8):1536–48. PubMed Europe PMC Scholia
  81. Eicosadienoic acid differentially modulates production of pro-inflammatory modulators in murine macrophages. Huang YS, Huang WC, Li CW, Chuang LT. Mol Cell Biochem. 2011 Dec;358(1–2):85–94. PubMed Europe PMC Scholia
  82. Generation and detection of levuglandins and isolevuglandins in vitro and in vivo. Zhang M, Li W, Li T. Molecules. 2011 Jun 24;16(7):5333–48. PubMed Europe PMC Scholia
  83. Isoprostane generation and function. Milne GL, Yin H, Hardy KD, Davies SS, Roberts LJ 2nd. Chem Rev. 2011 Oct 12;111(10):5973–96. PubMed Europe PMC Scholia
  84. Prostaglandin E2 EP receptors as therapeutic targets in breast cancer. Reader J, Holt D, Fulton A. Cancer Metastasis Rev. 2011 Dec;30(3–4):449–63. PubMed Europe PMC Scholia
  85. Multiple roles of dihomo-γ-linolenic acid against proliferation diseases. Wang X, Lin H, Gu Y. Lipids Health Dis. 2012 Feb 14;11:25. PubMed Europe PMC Scholia
  86. Functional analysis of human thromboxane synthase polymorphic variants. Chen CYK, Poole EM, Ulrich CM, Kulmacz RJ, Wang LH. Pharmacogenet Genomics. 2012 Sep;22(9):653–8. PubMed Europe PMC Scholia
  87. Suppressed circulating bicyclo-PGE2 levels and leukocyte COX-2 transcripts in children co-infected with P. falciparum malaria and HIV-1 or bacteremia. Anyona SB, Kempaiah P, Davenport GC, Vulule JM, Hittner JB, Ong’echa JM, et al. Biochem Biophys Res Commun. 2013 Jul 12;436(4):585–90. PubMed Europe PMC Scholia
  88. Lipidomics of essential fatty acids and oxygenated metabolites. Lagarde M, Bernoud-Hubac N, Calzada C, Véricel E, Guichardant M. Mol Nutr Food Res. 2013 Aug;57(8):1347–58. PubMed Europe PMC Scholia
  89. Cellular senescence involves an intracrine prostaglandin E2 pathway in human fibroblasts. Martien S, Pluquet O, Vercamer C, Malaquin N, Martin N, Gosselin K, et al. Biochim Biophys Acta. 2013 Jul;1831(7):1217–27. PubMed Europe PMC Scholia
  90. Prostaglandin E2 regulates its own inactivating enzyme, 15-PGDH, by EP2 receptor-mediated cervical cell-specific mechanisms. Kishore AH, Owens D, Word RA. J Clin Endocrinol Metab. 2014 Mar;99(3):1006–18. PubMed Europe PMC Scholia
  91. The isoprostanes--25 years later. Milne GL, Dai Q, Roberts LJ 2nd. Biochim Biophys Acta. 2015 Apr;1851(4):433–45. PubMed Europe PMC Scholia
  92. 15-Deoxy-Δ¹²,¹⁴-prostaglandin J₂ as an electrophilic mediator. Shibata T. Biosci Biotechnol Biochem. 2015;79(7):1044–9. PubMed Europe PMC Scholia
  93. On the biosynthesis of 15-HETE and eoxin C4 by human airway epithelial cells. Brunnström Å, Tryselius Y, Feltenmark S, Andersson E, Leksell H, James A, et al. Prostaglandins Other Lipid Mediat. 2015 Sep;121(Pt A):83–90. PubMed Europe PMC Scholia
  94. Advances in Our Understanding of Oxylipins Derived from Dietary PUFAs. Gabbs M, Leng S, Devassy JG, Monirujjaman M, Aukema HM. Adv Nutr. 2015 Sep 15;6(5):513–40. PubMed Europe PMC Scholia
  95. Prostaglandin J2: a potential target for halting inflammation-induced neurodegeneration. Figueiredo-Pereira ME, Corwin C, Babich J. Ann N Y Acad Sci. 2016 Jan;1363(1):125–37. PubMed Europe PMC Scholia
  96. 8-iso-prostaglandin-F2α: a possible trigger or accelerator of diabetic retinopathy. Zhang Y, Du Y, He JF, Li KJ. Int J Ophthalmol. 2016 Jan 18;9(1):163–5. PubMed Europe PMC Scholia
  97. 15-hydroxyprostaglandin dehydrogenase (15-PGDH) prevents lipopolysaccharide (LPS)-induced acute liver injury. Yao L, Chen W, Song K, Han C, Gandhi CR, Lim K, et al. PLoS One. 2017 Apr 19;12(4):e0176106. PubMed Europe PMC Scholia
  98. Isoprostanes, neuroprostanes and phytoprostanes: An overview of 25years of research in chemistry and biology. Galano JM, Lee YY, Oger C, Vigor C, Vercauteren J, Durand T, et al. Prog Lipid Res. 2017 Oct;68:83–108. PubMed Europe PMC Scholia
  99. Hallmarks of Cellular Senescence. Hernandez-Segura A, Nehme J, Demaria M. Trends Cell Biol. 2018 Jun;28(6):436–53. PubMed Europe PMC Scholia
  100. Leukotriene D4 induces cellular senescence in osteoblasts. Wei J, Chen S, Guo W, Feng B, Yang S, Huang C, et al. Int Immunopharmacol. 2018 May;58:154–9. PubMed Europe PMC Scholia
  101. Omega-3 and omega-6 polyunsaturated fatty acids: Dietary sources, metabolism, and significance - A review. Saini RK, Keum YS. Life Sci. 2018 Jun 15;203:255–67. PubMed Europe PMC Scholia
  102. Arachidonic acid: Physiological roles and potential health benefits - A review. Tallima H, El Ridi R. J Adv Res. 2017 Nov 24;11:33–41. PubMed Europe PMC Scholia
  103. A polymorphism in the fatty acid desaturase-2 gene is associated with the arachidonic acid metabolism in pigs. Gol S, Pena RN, Rothschild MF, Tor M, Estany J. Sci Rep. 2018 Sep 25;8(1):14336. PubMed Europe PMC Scholia
  104. 5 S,15 S-Dihydroperoxyeicosatetraenoic Acid (5,15-diHpETE) as a Lipoxin Intermediate: Reactivity and Kinetics with Human Leukocyte 5-Lipoxygenase, Platelet 12-Lipoxygenase, and Reticulocyte 15-Lipoxygenase-1. Green AR, Freedman C, Tena J, Tourdot BE, Liu B, Holinstat M, et al. Biochemistry. 2018 Dec 4;57(48):6726–34. PubMed Europe PMC Scholia
  105. FADS1 and FADS2 Polymorphisms Modulate Fatty Acid Metabolism and Dietary Impact on Health. Koletzko B, Reischl E, Tanjung C, Gonzalez-Casanova I, Ramakrishnan U, Meldrum S, et al. Annu Rev Nutr. 2019 Aug 21;39:21–44. PubMed Europe PMC Scholia
  106. 15-Deoxy-∆-12,14-Prostaglandin J2 (15d-PGJ2), an Endogenous Ligand of PPAR-γ: Function and Mechanism. Li J, Guo C, Wu J. PPAR Res. 2019 Aug 1;2019:7242030. PubMed Europe PMC Scholia
  107. Secretion of leukotrienes by senescent lung fibroblasts promotes pulmonary fibrosis. Wiley CD, Brumwell AN, Davis SS, Jackson JR, Valdovinos A, Calhoun C, et al. JCI Insight. 2019 Dec 19;4(24):e130056. PubMed Europe PMC Scholia
  108. Measurement of Thromboxane Biosynthesis in Health and Disease. Patrono C, Rocca B. Front Pharmacol. 2019 Oct 30;10:1244. PubMed Europe PMC Scholia
  109. Lipid Mediators Regulate Pulmonary Fibrosis: Potential Mechanisms and Signaling Pathways. Suryadevara V, Ramchandran R, Kamp DW, Natarajan V. Int J Mol Sci. 2020 Jun 15;21(12):4257. PubMed Europe PMC Scholia
  110. Moving forward with isoprostanes, neuroprostanes and phytoprostanes: where are we now? Ahmed OS, Galano JM, Pavlickova T, Revol-Cavalier J, Vigor C, Lee JCY, et al. Essays Biochem. 2020 Sep 23;64(3):463–84. PubMed Europe PMC Scholia
  111. Does leukotriene F4 play a major role in the infection mechanism of Candida sp.? Melo CFOR, Bachur LF, Delafiori J, Dabaja MZ, de Oliveira DN, Guerreiro TM, et al. Microb Pathog. 2020 Dec;149:104394. PubMed Europe PMC Scholia
  112. The enzymology of human eicosanoid pathways: the lipoxygenase branches. Biringer RG. Mol Biol Rep. 2020 Sep;47(9):7189–207. PubMed Europe PMC Scholia
  113. Effect of Prostanoids on Human Platelet Function: An Overview. Braune S, Küpper JH, Jung F. Int J Mol Sci. 2020 Nov 27;21(23):9020. PubMed Europe PMC Scholia
  114. Inhibition of prostaglandin-degrading enzyme 15-PGDH rejuvenates aged muscle mass and strength. Palla AR, Ravichandran M, Wang YX, Alexandrova L, Yang AV, Kraft P, et al. Science. 2021 Jan 29;371(6528):eabc8059. PubMed Europe PMC Scholia
  115. Fibroblast Senescence in Idiopathic Pulmonary Fibrosis. Lin Y, Xu Z. Front Cell Dev Biol. 2020 Nov 25;8:593283. PubMed Europe PMC Scholia
  116. The Biosynthesis of Enzymatically Oxidized Lipids. Hajeyah AA, Griffiths WJ, Wang Y, Finch AJ, O’Donnell VB. Front Endocrinol (Lausanne). 2020 Nov 19;11:591819. PubMed Europe PMC Scholia
  117. COX2 regulates senescence secretome composition and senescence surveillance through PGE2. Gonçalves S, Yin K, Ito Y, Chan A, Olan I, Gough S, et al. Cell Rep. 2021 Mar 16;34(11):108860. PubMed Europe PMC Scholia
  118. Oxylipin biosynthesis reinforces cellular senescence and allows detection of senolysis. Wiley CD, Sharma R, Davis SS, Lopez-Dominguez JA, Mitchell KP, Wiley S, et al. Cell Metab. 2021 Jun 1;33(6):1124-1136.e5. PubMed Europe PMC Scholia
  119. A review of non-prostanoid, eicosanoid receptors: expression, characterization, regulation, and mechanism of action. Biringer RG. J Cell Commun Signal. 2022 Mar;16(1):5–46. PubMed Europe PMC Scholia
  120. Prostaglandin I2 and T Regulatory Cell Function: Broader Impacts. Norlander AE, Peebles RS. DNA Cell Biol. 2021 Oct;40(10):1231–4. PubMed Europe PMC Scholia
  121. Cyclopentenone Prostaglandins: Biologically Active Lipid Mediators Targeting Inflammation. Lee BR, Paing MH, Sharma-Walia N. Front Physiol. 2021 Jul 15;12:640374. PubMed Europe PMC Scholia
  122. Beneficial Outcomes of Omega-6 and Omega-3 Polyunsaturated Fatty Acids on Human Health: An Update for 2021. Djuricic I, Calder PC. Nutrients. 2021 Jul 15;13(7):2421. PubMed Europe PMC Scholia
  123. The Functions of Cytochrome P450 ω-hydroxylases and the Associated Eicosanoids in Inflammation-Related Diseases. Ni KD, Liu JY. Front Pharmacol. 2021 Sep 14;12:716801. PubMed Europe PMC Scholia
  124. Prostaglandin D2 metabolites activate asthmatic patient-derived type 2 innate lymphoid cells and eosinophils via the DP2 receptor. Carstensen S, Gress C, Erpenbeck VJ, Kazani SD, Hohlfeld JM, Sandham DA, et al. Respir Res. 2021 Oct 7;22(1):262. PubMed Europe PMC Scholia
  125. New understandings of the pathway of long-chain polyunsaturated fatty acid biosynthesis. Brenna JT, Kothapalli KSD. Curr Opin Clin Nutr Metab Care. 2022 Mar 1;25(2):60–6. PubMed Europe PMC Scholia
  126. On the biosynthesis of specialized pro-resolving mediators in human neutrophils and the influence of cell integrity. Mainka M, George S, Angioni C, Ebert R, Goebel T, Kampschulte N, et al. Biochim Biophys Acta Mol Cell Biol Lipids. 2022 Mar;1867(3):159093. PubMed Europe PMC Scholia
  127. Role of arachidonic acid lipoxygenase pathway in Asthma. Luo Y, Jin M, Lou L, Yang S, Li C, Li X, et al. Prostaglandins Other Lipid Mediat. 2022 Feb;158:106609. PubMed Europe PMC Scholia
  128. Key Enzymes in Fatty Acid Synthesis Pathway for Bioactive Lipids Biosynthesis. Zhuang XY, Zhang YH, Xiao AF, Zhang AH, Fang BS. Front Nutr. 2022 Feb 23;9:851402. PubMed Europe PMC Scholia
  129. Cell cycle regulation: p53-p21-RB signaling. Engeland K. Cell Death Differ. 2022 May;29(5):946–60. PubMed Europe PMC Scholia
  130. Polyunsaturated fatty acids and fatty acid-derived lipid mediators: Recent advances in the understanding of their biosynthesis, structures, and functions. Dyall SC, Balas L, Bazan NG, Brenna JT, Chiang N, da Costa Souza F, et al. Prog Lipid Res. 2022 Apr;86:101165. PubMed Europe PMC Scholia
  131. Prostanoid Metabolites as Biomarkers in Human Disease. Idborg H, Pawelzik SC. Metabolites. 2022 Aug 4;12(8):721. PubMed Europe PMC Scholia
  132. Dihomo-γ-Linolenic Acid (20:3n-6)-Metabolism, Derivatives, and Potential Significance in Chronic Inflammation. Mustonen AM, Nieminen P. Int J Mol Sci. 2023 Jan 20;24(3):2116. PubMed Europe PMC Scholia
  133. Formation of lipoxins and resolvins in human leukocytes. Kahnt AS, Schebb NH, Steinhilber D. Prostaglandins Other Lipid Mediat. 2023 Jun;166:106726. PubMed Europe PMC Scholia
  134. Promising Anti-Inflammatory Tools: Biomedical Efficacy of Lipoxins and Their Synthetic Pathways. Chi J, Cheng J, Wang S, Li C, Chen M. Int J Mol Sci. 2023 Aug 27;24(17):13282. PubMed Europe PMC Scholia