NF1 copy number variation syndrome (WP5366)

Homo sapiens

The NF1 deletion and NF1 duplication, ranging from chr17: 29,100,000 to chr17: 30,280,000 can result in a loss of up to 14 protein coding genes, including NF1.

Authors

Ninagerrekens , Friederike Ehrhart , Egon Willighagen , and Kristina Hanspers

Activity

last edited

Discuss this pathway

Check for ongoing discussions or start your own.

Cited In

Are you planning to include this pathway in your next publication? See How to Cite and add a link here to your paper once it's online.

Organisms

Homo sapiens

Communities

Annotations

Pathway Ontology

disease pathway

Disease Ontology

neurofibromatosis 1

Participants

Label Type Compact URI Comment
GABA Metabolite chebi:59888
InsP4 Metabolite pubchem.compound:107758
Double strandedDNA Metabolite chebi:75909
cAMP Metabolite hmdb:HMDB0000058
PtdInsP3 Metabolite pubchem.compound:101362114
InsP3 Metabolite pubchem.compound:439456
GTP Metabolite chebi:15996
GDP Metabolite chebi:17552
SUZ12 GeneProduct ensembl:ENSG00000178691
NF1 GeneProduct ensembl:ENSG00000196712
CRLF3 GeneProduct ensembl:ENSG00000176390
ADAP2 GeneProduct ensembl:ENSG00000184060 centaurin aplha2 is a synonym for ADAP2
concentrated at the plasma membrane in unstilmulated cells
during human foetal development it was found to be expressed in the skeletal muscle, heart and brain
UTP6 GeneProduct ensembl:ENSG00000108651
CCNE1 GeneProduct ensembl:ENSG00000105173
ATAD5 GeneProduct ensembl:ENSG00000176208
EVI2A GeneProduct ensembl:ENSG00000126860
CRY1 GeneProduct ensembl:ENSG00000008405
RAD9A GeneProduct ensembl:ENSG00000172613
SUZ12P GeneProduct ensembl:ENSG00000264538 pseudogene
EGFR GeneProduct ensembl:ENSG00000146648
PCNA GeneProduct ensembl:ENSG00000132646
EVI2B GeneProduct ensembl:ENSG00000185862
HOXA9 GeneProduct ensembl:ENSG00000078399
COPRS GeneProduct ensembl:ENSG00000172301
TEFM GeneProduct ensembl:ENSG00000172171
RNF135 GeneProduct ensembl:ENSG00000181481
OMG GeneProduct ensembl:ENSG00000126861
CTD-2370N5.3 GeneProduct ensembl:ENSG00000265118
BCL2 GeneProduct ensembl:ENSG00000171791
PCNA GeneProduct ensembl:ENSG00000132646
ADAP2 GeneProduct ensembl:ENSG00000184060 centaurin aplha2 is a synonym for ADAP2
concentrated at the plasma membrane in unstilmulated cells
during human foetal development it was found to be expressed in the skeletal muscle, heart and brain
CTD-2349P21.10 GeneProduct ensembl:ENSG00000265791 sense intronic
CTD-2349P21.9 GeneProduct ensembl:ENSG00000266490 LincRNA
CTD-2349P21.1 GeneProduct ensembl:ENSG00000242439 pseudogene
CTD-2349P21.11 GeneProduct ensembl:ENSG00000265334 antisense RNA
RNU6-298P GeneProduct ensembl:ENSG00000212190
RP13-753N3.1 GeneProduct ensembl:ENSG00000263531 antisene RNA
AC091177.1 GeneProduct ensembl:ENSG00000230113 antisense RNA
RN7SL138P GeneProduct ensembl:ENSG00000266274
RP11-848P1.3 GeneProduct ensembl:ENSG00000265743
RP11-848P1.2 GeneProduct ensembl:ENSG00000264456 sense intronic
DPRXP4 GeneProduct ensembl:ENSG00000264743 pseudogene
RP11-848P1.4 GeneProduct ensembl:ENSG00000266340 antisense RNA
RP11-848P1.7 GeneProduct ensembl:ENSG00000264148 pseudogene
RP11-848P1.9 GeneProduct ensembl:ENSG00000266865 pseudogene
RP11-271K11.5 GeneProduct ensembl:ENSG00000265798 pseudogene
RP11-848P1.2 GeneProduct ensembl:ENSG00000264456 antisense RNA
MIR4733 GeneProduct ensembl:ENSG00000265444 miRNA
RP11-142O6.1 GeneProduct ensembl:ENSG00000266371 sense intronic
AK4P1 GeneProduct ensembl:ENSG00000263535 pseudogene
RN7SL79P GeneProduct ensembl:ENSG00000239595 Misc RNA
RN7SL45P GeneProduct ensembl:ENSG00000264862 Misc RNA
MIR4724 GeneProduct ensembl:ENSG00000266459 Micro RNA
MIR193A GeneProduct ensembl:ENSG00000207614 Micro RNA
RNU6ATAC7P GeneProduct ensembl:ENSG00000221038 SnRNA
AC003101.1 GeneProduct ensembl:ENSG00000228768
MIR4725 GeneProduct ensembl:ENSG00000265976 miRNA
MIR365B GeneProduct ensembl:ENSG00000199187 miRNA
RP1-41C23.1 GeneProduct ensembl:ENSG00000266877 LincRNA
RP11-805L22.1 GeneProduct ensembl:ENSG00000266448 pseudogene
RNU6-1134P GeneProduct ensembl:ENSG00000202026 SnRNA
RP11-805L22.2 GeneProduct ensembl:ENSG00000265863 pseudogene
RP11-805L22.3 GeneProduct ensembl:ENSG00000263567 LincRNA
CTC-542B22.1 GeneProduct ensembl:ENSG00000265046 LincRNA
CCNE2 GeneProduct ensembl:ENSG00000175305
EGFR GeneProduct ensembl:ENSG00000146648
PER1 GeneProduct ensembl:ENSG00000179094
CTC-542B22.2 GeneProduct ensembl:ENSG00000263990 LincRNA
MYT1 GeneProduct ensembl:ENSG00000196132
HOXA1 GeneProduct ensembl:ENSG00000105991
CCNA2 GeneProduct ensembl:ENSG00000145386
PSMD11 GeneProduct ensembl:ENSG00000196132
SYBL1 GeneProduct ensembl:ENSG00000196132
MGAT4B GeneProduct ensembl:ENSG00000196132
EML4 GeneProduct ensembl:ENSG00000196132
SRD6A1 GeneProduct ensembl:ENSG00000196132
RBMS1 GeneProduct ensembl:ENSG00000196132
EIF3A GeneProduct ensembl:ENSG00000107581
RAB11FIP4 GeneProduct ensembl:ENSG00000131242
SPT5 Protein uniprot:O00267
INPP5A Protein uniprot:Q14642 protein is called inositol polyphosphate-5-phosphatase
PRMT5 Protein uniprot:O14744 COPRS binds to histone 4, this binding allows PRMT5 to bind to the DNA (chromatin) and the binding of PRMT5 to the DNA activates the function of PRMT5
DNMT1 Protein uniprot:P26358
MCL1 Protein uniprot:Q07820
SOS1 Protein uniprot:Q07889
IFN-β Protein uniprot:P01574
ARF6 Protein uniprot:P62330
POLRMT Protein uniprot:O00411
E2F6 Protein uniprot:O75461
MEK1 Protein uniprot:Q13233
RIG-I Protein uniprot:O95786
RFC2 Protein uniprot:P35250
Histone H4 Protein uniprot:P62805
ATR Protein uniprot:Q13535
MAP2 Protein uniprot:P50579
RAF Protein uniprot:P04049
NGFR Protein uniprot:P08138
RAD51 Protein uniprot:Q06609
ROCK2 Protein uniprot:O75116
SYNDECAN-2 Protein uniprot:P34741
IPS-1 Protein uniprot:Q7Z434
RHOA Protein uniprot:P61586
NOGOR Protein uniprot:Q9BZR6
USP1 Protein uniprot:O94782
LIMK Protein uniprot:P53667
EZH1 Protein uniprot:Q92800
TUBULIN-β Protein uniprot:P07437
ENA/VASP Protein uniprot:Q9UI08
ATAD5 Protein uniprot:Q96QE3
COFILIN Protein uniprot:P23528
WDR48 Protein uniprot:Q8TAF3
RFC3 Protein uniprot:P40938
EGF Protein uniprot:P01133
SYN1 Protein uniprot:P17600
RFC5 Protein uniprot:P40937
RFC4 Protein uniprot:P35249
RAD51 Protein uniprot:Q06609
RIG-I Protein uniprot:O95786
RAS family Protein interpro:cd04138
RAS family Protein interpro:cd04138 This is the inactive state of RAS so NF1 downregulates the RAS signalling pathway and can be
MEK2 Protein uniprot:Q9Y2U5
MEK1 Protein uniprot:Q13233
MEK2 Protein uniprot:Q9Y2U5
ERK1 Protein uniprot:P27361
ERK2 Protein uniprot:P28482
ERK2 Protein uniprot:P28482
ERK1 Protein uniprot:P27361
PKA Protein brenda:2.7.11.11
ENA/VASP Protein uniprot:Q9UI08
LIMK1 Protein uniprot:P53667
COFILIN Protein uniprot:P23528 by phosphorylating cofilin, cofilin becomes inactive
RAF Protein uniprot:P04049 formation of heterodimer of two RAF
RAF Protein uniprot:P04049 formation of heterodimer of two RAF
NGF Protein uniprot:P01138
SPT5 Protein uniprot:O00267
SOS1 Protein uniprot:Q07889
SUZ12 Protein uniprot:Q15022
JARID2 Protein uniprot:Q92833
EED Protein uniprot:O75530
RBBP7 Protein uniprot:Q16576
UTP6 Protein uniprot:Q9NYH9
Histone H3.1 Protein uniprot:P68431
Histone H3.2 Protein uniprot:Q71DI3
Histone H3.1 Protein uniprot:P68431
Histone H3.2 Protein uniprot:Q71DI3
RAB11 Protein uniprot:P62491
EXOC1 Protein uniprot:Q9NV70 SEC3
EXOC4 Protein uniprot:Q96A65 SEC8
EXOC3 Protein uniprot:O60645 SEC6
EXOC2 Protein uniprot:Q96KP1 SEC 5
EXOC7 Protein uniprot:Q9UPT5 EXO70
EXOC5 Protein uniprot:O00471
EXOC8 Protein uniprot:Q8IYI6
EXOC6 Protein uniprot:Q8TAG9 SEC15
SYN1 Protein uniprot:P17600

References

  1. Common and distinct tubulin binding sites for microtubule-associated proteins. Littauer UZ, Giveon D, Thierauf M, Ginzburg I, Ponstingl H. Proc Natl Acad Sci U S A. 1986 Oct;83(19):7162–6. PubMed Europe PMC Scholia
  2. Human cyclin E, a nuclear protein essential for the G1-to-S phase transition. Ohtsubo M, Theodoras AM, Schumacher J, Roberts JM, Pagano M. Mol Cell Biol. 1995 May;15(5):2612–24. PubMed Europe PMC Scholia
  3. E2F-6: a novel member of the E2F family is an inhibitor of E2F-dependent transcription. Cartwright P, Müller H, Wagener C, Holm K, Helin K. Oncogene. 1998 Aug 6;17(5):611–23. PubMed Europe PMC Scholia
  4. InsP4 facilitates store-operated calcium influx by inhibition of InsP3 5-phosphatase. Hermosura MC, Takeuchi H, Fleig A, Riley AM, Potter BV, Hirata M, et al. Nature. 2000 Dec 7;408(6813):735–40. PubMed Europe PMC Scholia
  5. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, et al. Science. 2002 Nov 1;298(5595):1039–43. PubMed Europe PMC Scholia
  6. P75 interacts with the Nogo receptor as a co-receptor for Nogo, MAG and OMgp. Wang KC, Kim JA, Sivasankaran R, Segal R, He Z. Nature. 2002 Nov 7;420(6911):74–8. PubMed Europe PMC Scholia
  7. A p75(NTR) and Nogo receptor complex mediates repulsive signaling by myelin-associated glycoprotein. Wong ST, Henley JR, Kanning KC, Huang K hua, Bothwell M, Poo M ming. Nat Neurosci. 2002 Dec;5(12):1302–8. PubMed Europe PMC Scholia
  8. Methylation of SPT5 regulates its interaction with RNA polymerase II and transcriptional elongation properties. Kwak YT, Guo J, Prajapati S, Park KJ, Surabhi RM, Miller B, et al. Mol Cell. 2003 Apr;11(4):1055–66. PubMed Europe PMC Scholia
  9. Elg1 forms an alternative PCNA-interacting RFC complex required to maintain genome stability. Kanellis P, Agyei R, Durocher D. Curr Biol. 2003 Sep 16;13(18):1583–95. PubMed Europe PMC Scholia
  10. Identification of gene structure and subcellular localization of human centaurin alpha 2, and p42IP4, a family of two highly homologous, Ins 1,3,4,5-P4-/PtdIns 3,4,5-P3-binding, adapter proteins. Hanck T, Stricker R, Sedehizade F, Reiser G. J Neurochem. 2004 Jan;88(2):326–36. PubMed Europe PMC Scholia
  11. Regulation of dendritic branching and filopodia formation in hippocampal neurons by specific acylated protein motifs. Gauthier-Campbell C, Bredt DS, Murphy TH, El-Husseini AED. Mol Biol Cell. 2004 May;15(5):2205–17. PubMed Europe PMC Scholia
  12. The great escape; phosphorylation of Ena/VASP by PKA promotes filopodial formation. Gomez TM, Robles E. Neuron. 2004 Apr 8;42(1):1–3. PubMed Europe PMC Scholia
  13. SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED-EZH2 complex. Cao R, Zhang Y. Mol Cell. 2004 Jul 2;15(1):57–67. PubMed Europe PMC Scholia
  14. Silencing of human polycomb target genes is associated with methylation of histone H3 Lys 27. Kirmizis A, Bartley SM, Kuzmichev A, Margueron R, Reinberg D, Green R, et al. Genes Dev. 2004 Jul 1;18(13):1592–605. PubMed Europe PMC Scholia
  15. Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity. Pasini D, Bracken AP, Jensen MR, Lazzerini Denchi E, Helin K. EMBO J. 2004 Oct 13;23(20):4061–71. PubMed Europe PMC Scholia
  16. Frag1, a homolog of alternative replication factor C subunits, links replication stress surveillance with apoptosis. Ishii H, Inageta T, Mimori K, Saito T, Sasaki H, Isobe M, et al. Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9655–60. PubMed Europe PMC Scholia
  17. Mcl-1 is an anti-apoptotic factor for human hepatocellular carcinoma. Fleischer B, Schulze-Bergkamen H, Schuchmann M, Weber A, Biesterfeld S, Müller M, et al. Int J Oncol. 2006 Jan;28(1):25–32. PubMed Europe PMC Scholia
  18. Rab11-FIP4 is predominantly expressed in neural tissues and involved in proliferation as well as in differentiation during zebrafish retinal development. Muto A, Arai KI, Watanabe S. Dev Biol. 2006 Apr 1;292(1):90–102. PubMed Europe PMC Scholia
  19. Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Bracken AP, Dietrich N, Pasini D, Hansen KH, Helin K. Genes Dev. 2006 May 1;20(9):1123–36. PubMed Europe PMC Scholia
  20. Syndecan-2 induces filopodia and dendritic spine formation via the neurofibromin-PKA-Ena/VASP pathway. Lin YL, Lei YT, Hong CJ, Hsueh YP. J Cell Biol. 2007 Jun 4;177(5):829–41. PubMed Europe PMC Scholia
  21. A UAF1-containing multisubunit protein complex regulates the Fanconi anemia pathway. Cohn MA, Kowal P, Yang K, Haas W, Huang TT, Gygi SP, et al. Mol Cell. 2007 Dec 14;28(5):786–97. PubMed Europe PMC Scholia
  22. The histone-binding protein COPR5 is required for nuclear functions of the protein arginine methyltransferase PRMT5. Lacroix M, El Messaoudi S, Rodier G, Le Cam A, Sardet C, Fabbrizio E. EMBO Rep. 2008 May;9(5):452–8. PubMed Europe PMC Scholia
  23. A direct interaction between the Utp6 half-a-tetratricopeptide repeat domain and a specific peptide in Utp21 is essential for efficient pre-rRNA processing. Champion EA, Lane BH, Jackrel ME, Regan L, Baserga SJ. Mol Cell Biol. 2008 Nov;28(21):6547–56. PubMed Europe PMC Scholia
  24. Neurofibromin regulation of ERK signaling modulates GABA release and learning. Cui Y, Costa RM, Murphy GG, Elgersma Y, Zhu Y, Gutmann DH, et al. Cell. 2008 Oct 31;135(3):549–60. PubMed Europe PMC Scholia
  25. Riplet/RNF135, a RING finger protein, ubiquitinates RIG-I to promote interferon-beta induction during the early phase of viral infection. Oshiumi H, Matsumoto M, Hatakeyama S, Seya T. J Biol Chem. 2009 Jan 9;284(2):807–17. PubMed Europe PMC Scholia
  26. Cloning and characterization of a novel intracellular protein p48.2 that negatively regulates cell cycle progression. Yang F, Xu YP, Li J, Duan SS, Fu YJ, Zhang Y, et al. Int J Biochem Cell Biol. 2009 Nov;41(11):2240–50. PubMed Europe PMC Scholia
  27. Human ELG1 regulates the level of ubiquitinated proliferating cell nuclear antigen (PCNA) through Its interactions with PCNA and USP1. Lee KY, Yang K, Cohn MA, Sikdar N, D’Andrea AD, Myung K. J Biol Chem. 2010 Apr 2;285(14):10362–9. PubMed Europe PMC Scholia
  28. Distinct and redundant functions of cyclin E1 and cyclin E2 in development and cancer. Caldon CE, Musgrove EA. Cell Div. 2010 Jan 17;5:2. PubMed Europe PMC Scholia
  29. The ubiquitin ligase Riplet is essential for RIG-I-dependent innate immune responses to RNA virus infection. Oshiumi H, Miyashita M, Inoue N, Okabe M, Matsumoto M, Seya T. Cell Host Microbe. 2010 Dec 16;8(6):496–509. PubMed Europe PMC Scholia
  30. Crosstalk between Arg 1175 methylation and Tyr 1173 phosphorylation negatively modulates EGFR-mediated ERK activation. Hsu JM, Chen CT, Chou CK, Kuo HP, Li LY, Lin CY, et al. Nat Cell Biol. 2011 Feb;13(2):174–81. PubMed Europe PMC Scholia
  31. TEFM (c17orf42) is necessary for transcription of human mtDNA. Minczuk M, He J, Duch AM, Ettema TJ, Chlebowski A, Dzionek K, et al. Nucleic Acids Res. 2011 May;39(10):4284–99. PubMed Europe PMC Scholia
  32. Quantification of PtdInsP3 molecular species in cells and tissues by mass spectrometry. Clark J, Anderson KE, Juvin V, Smith TS, Karpe F, Wakelam MJO, et al. Nat Methods. 2011 Mar;8(3):267–72. PubMed Europe PMC Scholia
  33. Regulation of Rad51 function by phosphorylation. Flott S, Kwon Y, Pigli YZ, Rice PA, Sung P, Jackson SP. EMBO Rep. 2011 Jul 8;12(8):833–9. PubMed Europe PMC Scholia
  34. RAS Interaction with PI3K: More Than Just Another Effector Pathway. Castellano E, Downward J. Genes Cancer. 2011 Mar;2(3):261–74. PubMed Europe PMC Scholia
  35. Protein arginine methyltransferase 5 regulates ERK1/2 signal transduction amplitude and cell fate through CRAF. Andreu-Pérez P, Esteve-Puig R, de Torre-Minguela C, López-Fauqued M, Bech-Serra JJ, Tenbaum S, et al. Sci Signal. 2011 Sep 13;4(190):ra58. PubMed Europe PMC Scholia
  36. The effect of substrate microtopography on focal adhesion maturation and actin organization via the RhoA/ROCK pathway. Seo CH, Furukawa K, Montagne K, Jeong H, Ushida T. Biomaterials. 2011 Dec;32(36):9568–75. PubMed Europe PMC Scholia
  37. The nogo receptor family restricts synapse number in the developing hippocampus. Wills ZP, Mandel-Brehm C, Mardinly AR, McCord AE, Giger RJ, Greenberg ME. Neuron. 2012 Feb 9;73(3):466–81. PubMed Europe PMC Scholia
  38. Exorcising the exocyst complex. Heider MR, Munson M. Traffic. 2012 Jul;13(7):898–907. PubMed Europe PMC Scholia
  39. Rab11 regulates exocytosis of recycling vesicles at the plasma membrane. Takahashi S, Kubo K, Waguri S, Yabashi A, Shin HW, Katoh Y, et al. J Cell Sci. 2012 Sep 1;125(Pt 17):4049–57. PubMed Europe PMC Scholia
  40. DNA methyltransferases, DNA damage repair, and cancer. Jin B, Robertson KD. Adv Exp Med Biol. 2013;754:3–29. PubMed Europe PMC Scholia
  41. Role of type II protein arginine methyltransferase 5 in the regulation of Circadian Per1 gene. Na J, Lee K, Kim HG, Shin JY, Na W, Jeong H, et al. PLoS One. 2012;7(10):e48152. PubMed Europe PMC Scholia
  42. ATAD5 regulates the lifespan of DNA replication factories by modulating PCNA level on the chromatin. Lee K young, Fu H, Aladjem MI, Myung K. J Cell Biol. 2013 Jan 7;200(1):31–44. PubMed Europe PMC Scholia
  43. Centaurin-α₂ interacts with β-tubulin and stabilizes microtubules. Zuccotti P, Cartelli D, Stroppi M, Pandini V, Venturin M, Aliverti A, et al. PLoS One. 2012;7(12):e52867. PubMed Europe PMC Scholia
  44. Alternative replication factor C protein, Elg1, maintains chromosome stability by regulating PCNA levels on chromatin. Shiomi Y, Nishitani H. Genes Cells. 2013 Nov;18(11):946–59. PubMed Europe PMC Scholia
  45. Regulation of type I interferon responses. Ivashkiv LB, Donlin LT. Nat Rev Immunol. 2014 Jan;14(1):36–49. PubMed Europe PMC Scholia
  46. ROCK-2 is associated with focal adhesion maturation during myoblast migration. Goetsch KP, Snyman C, Myburgh KH, Niesler CU. J Cell Biochem. 2014 Jul;115(7):1299–307. PubMed Europe PMC Scholia
  47. ROCK2 is a major regulator of axonal degeneration, neuronal death and axonal regeneration in the CNS. Koch JC, Tönges L, Barski E, Michel U, Bähr M, Lingor P. Cell Death Dis. 2014 May 15;5(5):e1225. PubMed Europe PMC Scholia
  48. Axon growth inhibition by RhoA/ROCK in the central nervous system. Fujita Y, Yamashita T. Front Neurosci. 2014 Oct 22;8:338. PubMed Europe PMC Scholia
  49. Systems Pharmacology of the NGF Signaling Through p75 and TrkA Receptors. Toni T, Dua P, van der Graaf PH. CPT Pharmacometrics Syst Pharmacol. 2014 Dec 3;3(12):e150. PubMed Europe PMC Scholia
  50. TEFM is a potent stimulator of mitochondrial transcription elongation in vitro. Posse V, Shahzad S, Falkenberg M, Hällberg BM, Gustafsson CM. Nucleic Acids Res. 2015 Mar 11;43(5):2615–24. PubMed Europe PMC Scholia
  51. ERK1 and ERK2 Map Kinases: Specific Roles or Functional Redundancy? Buscà R, Pouysségur J, Lenormand P. Front Cell Dev Biol. 2016 Jun 8;4:53. PubMed Europe PMC Scholia
  52. The Ras/Raf/MEK/ERK signaling pathway and its role in the occurrence and development of HCC. Li L, Zhao GD, Shi Z, Qi LL, Zhou LY, Fu ZX. Oncol Lett. 2016 Nov;12(5):3045–50. PubMed Europe PMC Scholia
  53. EVI2B is a C/EBPα target gene required for granulocytic differentiation and functionality of hematopoietic progenitors. Zjablovskaja P, Kardosova M, Danek P, Angelisova P, Benoukraf T, Wurm AA, et al. Cell Death Differ. 2017 Apr;24(4):705–16. PubMed Europe PMC Scholia
  54. Ras-Mediated Activation of the Raf Family Kinases. Terrell EM, Morrison DK. Cold Spring Harb Perspect Med. 2019 Jan 2;9(1):a033746. PubMed Europe PMC Scholia
  55. Insights into the roles of miRNAs; miR-193 as one of small molecular silencer in osteosarcoma therapy. Izadpanah S, Shabani P, Aghebati-Maleki A, Baghbani E, Baghbanzadeh A, Fotouhi A, et al. Biomed Pharmacother. 2019 Mar;111:873–81. PubMed Europe PMC Scholia
  56. TEFM regulates both transcription elongation and RNA processing in mitochondria. Jiang S, Koolmeister C, Misic J, Siira S, Kühl I, Silva Ramos E, et al. EMBO Rep. 2019 Jun;20(6):e48101. PubMed Europe PMC Scholia
  57. The Small GTPase Arf6: An Overview of Its Mechanisms of Action and of Its Role in Host⁻Pathogen Interactions and Innate Immunity. Van Acker T, Tavernier J, Peelman F. Int J Mol Sci. 2019 May 5;20(9):2209. PubMed Europe PMC Scholia
  58. Long Non-coding RNAs in Myeloid Malignancies. Zimta AA, Tomuleasa C, Sahnoune I, Calin GA, Berindan-Neagoe I. Front Oncol. 2019 Oct 18;9:1048. PubMed Europe PMC Scholia
  59. Increased expression of ecotropic viral integration site 2A indicates a poor prognosis and promotes osteosarcoma evolution through activating MEK/ERK pathway. Li S, Yang F, Yang YK, Zhou Y. J Recept Signal Transduct Res. 2019 Aug;39(4):368–72. PubMed Europe PMC Scholia
  60. ATAD5 promotes replication restart by regulating RAD51 and PCNA in response to replication stress. Park SH, Kang N, Song E, Wie M, Lee EA, Hwang S, et al. Nat Commun. 2019 Dec 16;10(1):5718. PubMed Europe PMC Scholia
  61. Neurofibromin Structure, Functions and Regulation. Bergoug M, Doudeau M, Godin F, Mosrin C, Vallée B, Bénédetti H. Cells. 2020 Oct 27;9(11):2365. PubMed Europe PMC Scholia
  62. POLRMT mutations impair mitochondrial transcription causing neurological disease. Oláhová M, Peter B, Szilagyi Z, Diaz-Maldonado H, Singh M, Sommerville EW, et al. Nat Commun. 2021 Feb 18;12(1):1135. PubMed Europe PMC Scholia
  63. Nucleolar maturation of the human small subunit processome. Singh S, Vanden Broeck A, Miller L, Chaker-Margot M, Klinge S. Science. 2021 Sep 10;373(6560):eabj5338. PubMed Europe PMC Scholia
  64. KRAS and RAS-MAPK Pathway Deregulation in Mature B Cell Lymphoproliferative Disorders. Vendramini E, Bomben R, Pozzo F, Bittolo T, Tissino E, Gattei V, et al. Cancers (Basel). 2022 Jan 28;14(3):666. PubMed Europe PMC Scholia
  65. MiR-4733-5p promotes gallbladder carcinoma progression via directly targeting kruppel like factor 7. Hu X, Zhang J, Bu J, Yang K, Xu S, Pan M, et al. Bioengineered. 2022 Apr;13(4):10691–706. PubMed Europe PMC Scholia
  66. Identification of hsa-miR-365b-5p’s role in Alzheimer’s disease: A combined analysis of miRNA and mRNA microarrays. Wang Y, Lv S, Zhou X, Niu X, Chen L, Yang Z, et al. Neurosci Lett. 2022 Nov 1;790:136892. PubMed Europe PMC Scholia