2q11.2 copy number variation syndrome (WP5221)

Homo sapiens

The 2q11.2 copy number variation syndrome can result in the loss of up to 27 protein-coding genes. Patients with 2q11.2 deletions were reported to have developmental delay, speech delay and ADHD, while subjects with 2q11.2 duplications apart from developmental delay had gastroesophageal reflux and short stature (DOI: 10.1002/ajmg.a.37269).


Daria Shumkova and Friederike Ehrhart


last edited

Discuss this pathway

Check for ongoing discussions or start your own.

Cited By

Are you planning to include this pathway in your next publication? See How to Cite and add a link here to your paper once it's online.


Homo sapiens


Rare Diseases


Pathway Ontology

disease pathway


Label Type Compact Identifier Comment
G3P Metabolite chebi:57597
1-acyl LPA Metabolite chebi:57970
glycoproteins Metabolite chebi:17089
phosphatidylcholines Metabolite chebi:49183
glycoproteins Metabolite chebi:17089
Pre-mRNA Metabolite chebi:139356
proteins Metabolite chebi:36080
TRIM43B GeneProduct ensembl:ENSG00000144010
NEURL3 GeneProduct ensembl:ENSG00000163121
IGKV1OR2-11 GeneProduct ensembl:ENSG00000270187
ANKRD36C GeneProduct ensembl:ENSG00000174501
STARD7-AS1 GeneProduct ensembl:ENSG00000204685
MIR3127 GeneProduct ensembl:ENSG00000264157
IGKV2OR2-7D GeneProduct ensembl:ENSG00000270450
SNRNP200 GeneProduct ensembl:ENSG00000144028
COL2A1 GeneProduct ensembl:ENSG00000139219
FAHD2CP GeneProduct ensembl:ENSG00000231584
IGKV2OR2-2 GeneProduct ensembl:ENSG00000271402
IGKV2OR2-10 GeneProduct ensembl:ENSG00000276050
ASTL GeneProduct ensembl:ENSG00000188886
ADRA2B GeneProduct ensembl:ENSG00000274286
IGKV2OR2-8 GeneProduct ensembl:ENSG00000278537
RN7SL313P GeneProduct ensembl:ENSG00000275655
IGKV3OR2-5 GeneProduct ensembl:ENSG00000270252
IGKV2OR2-1 GeneProduct ensembl:ENSG00000270748
STARD7 GeneProduct ensembl:ENSG00000084090
ANKRD36B GeneProduct ensembl:ENSG00000196912
RN7SL210P GeneProduct ensembl:ENSG00000275961
TRIM43CP GeneProduct ensembl:ENSG00000144188
TMEM127 GeneProduct ensembl:ENSG00000135956
GPAT2 GeneProduct ensembl:ENSG00000186281
IGKV1OR2-9 GeneProduct ensembl:ENSG00000271351
UBTFL3 GeneProduct ensembl:ENSG00000204699
ANKRD39 GeneProduct ensembl:ENSG00000213337
DUSP2 GeneProduct ensembl:ENSG00000158050
LMAN2L GeneProduct ensembl:ENSG00000114988
IGKV2OR2-7 GeneProduct ensembl:ENSG00000271015
OR7E102P GeneProduct ensembl:ENSG00000168992
SEMA4C GeneProduct ensembl:ENSG00000168758
TRIM64FP GeneProduct ensembl:ENSG00000226185
FAHD2B GeneProduct ensembl:ENSG00000144199
CNNM3 GeneProduct ensembl:ENSG00000168763
IGKV1OR2-6 GeneProduct ensembl:ENSG00000271569
NCAPH GeneProduct ensembl:ENSG00000121152
LINC00342 GeneProduct ensembl:ENSG00000232931
ARID5A GeneProduct ensembl:ENSG00000196843
RNA5SP101 GeneProduct ensembl:ENSG00000252845
UBTFL5 GeneProduct ensembl:ENSG00000204705
ANKRD23 GeneProduct ensembl:ENSG00000163126
CIAO1 GeneProduct ensembl:ENSG00000144021
TRIM43 GeneProduct ensembl:ENSG00000144015
TRIM51JP GeneProduct ensembl:ENSG00000232717
IGKV1OR2-3 GeneProduct ensembl:ENSG00000204670
FER1L5 GeneProduct ensembl:ENSG00000249715
FAM178B GeneProduct ensembl:ENSG00000168754
ITPRIPL1 GeneProduct ensembl:ENSG00000198885
ANKRD36 GeneProduct ensembl:ENSG00000135976
KANSL3 GeneProduct ensembl:ENSG00000114982
CNNM4 GeneProduct ensembl:ENSG00000158158
RHOA Protein ensembl:ENSG00000067560
COX11 Protein ensembl:ENSG00000166260
CIAO2A Protein ensembl:ENSG00000166797
ZP2 Protein ensembl:ENSG00000103310
PARL Protein ensembl:ENSG00000175193
MAPK3 Protein ensembl:ENSG00000102882
PLXNB2 Protein ensembl:ENSG00000196576
MAPK1 Protein ensembl:ENSG00000100030
MAPK3 Protein ensembl:ENSG00000102882
MAPK1 Protein ensembl:ENSG00000100030
CIAO2B Protein ensembl:ENSG00000166595
COL2A1 Protein ensembl:ENSG00000139219
CIAO1 Protein ensembl:ENSG00000144021
MMS19 Protein ensembl:ENSG00000155229
ERBB2 Protein ensembl:ENSG00000141736
ERBB2 Protein ensembl:ENSG00000141736


  1. Repression by a differentiation-specific factor of the human cytomegalovirus enhancer. Huang TH, Oka T, Asai T, Okada T, Merrills BW, Gertson PN, et al. Nucleic Acids Res. 1996 May 1;24(9):1695–701. PubMed Europe PMC Scholia
  2. The human U5-200kD DEXH-box protein unwinds U4/U6 RNA duplices in vitro. Laggerbauer B, Achsel T, Lührmann R. Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4188–92. PubMed Europe PMC Scholia
  3. The lectin ERGIC-53 is a cargo transport receptor for glycoproteins. Appenzeller C, Andersson H, Kappeler F, Hauri HP. Nat Cell Biol. 1999 Oct;1(6):330–4. PubMed Europe PMC Scholia
  4. Chromosome condensation by a human condensin complex in Xenopus egg extracts. Kimura K, Cuvier O, Hirano T. J Biol Chem. 2001 Feb 23;276(8):5417–20. PubMed Europe PMC Scholia
  5. G(z) signaling: emerging divergence from G(i) signaling. Ho MK, Wong YH. Oncogene. 2001 Mar 26;20(13):1615–25. PubMed Europe PMC Scholia
  6. VIPL, a VIP36-like membrane protein with a putative function in the export of glycoproteins from the endoplasmic reticulum. Neve EPA, Svensson K, Fuxe J, Pettersson RF. Exp Cell Res. 2003 Aug 1;288(1):70–83. PubMed Europe PMC Scholia
  7. Cell cycle-dependent phosphorylation, nuclear localization, and activation of human condensin. Takemoto A, Kimura K, Yokoyama S, Hanaoka F. J Biol Chem. 2004 Feb 6;279(6):4551–9. PubMed Europe PMC Scholia
  8. Spatial and temporal regulation of Condensins I and II in mitotic chromosome assembly in human cells. Ono T, Fang Y, Spector DL, Hirano T. Mol Biol Cell. 2004 Jul;15(7):3296–308. PubMed Europe PMC Scholia
  9. Physical interaction and functional coupling between ACDP4 and the intracellular ion chaperone COX11, an implication of the role of ACDP4 in essential metal ion transport and homeostasis. Guo D, Ling J, Wang MH, She JX, Gu J, Wang CY. Mol Pain. 2005 Apr 19;1:15. PubMed Europe PMC Scholia
  10. The essential WD40 protein Cia1 is involved in a late step of cytosolic and nuclear iron-sulfur protein assembly. Balk J, Aguilar Netz DJ, Tepper K, Pierik AJ, Lill R. Mol Cell Biol. 2005 Dec;25(24):10833–41. PubMed Europe PMC Scholia
  11. The network of protein-protein interactions within the human U4/U6.U5 tri-snRNP. Liu S, Rauhut R, Vornlocher HP, Lührmann R. RNA. 2006 Jul;12(7):1418–30. PubMed Europe PMC Scholia
  12. Regulation of MAP kinases by MAP kinase phosphatases. Kondoh K, Nishida E. Biochim Biophys Acta. 2007 Aug;1773(8):1227–37. PubMed Europe PMC Scholia
  13. Sema4C participates in myogenic differentiation in vivo and in vitro through the p38 MAPK pathway. Wu H, Wang X, Liu S, Wu Y, Zhao T, Chen X, et al. Eur J Cell Biol. 2007 Jun;86(6):331–44. PubMed Europe PMC Scholia
  14. Molecular basis of sugar recognition by the human L-type lectins ERGIC-53, VIPL, and VIP36. Kamiya Y, Kamiya D, Yamamoto K, Nyfeler B, Hauri HP, Kato K. J Biol Chem. 2008 Jan 25;283(4):1857–61. PubMed Europe PMC Scholia
  15. AGPAT6 is a novel microsomal glycerol-3-phosphate acyltransferase. Chen YQ, Kuo MS, Li S, Bui HH, Peake DA, Sanders PE, et al. J Biol Chem. 2008 Apr 11;283(15):10048–57. PubMed Europe PMC Scholia
  16. Acyl-CoA:lysophospholipid acyltransferases. Shindou H, Shimizu T. J Biol Chem. 2009 Jan 2;284(1):1–5. PubMed Europe PMC Scholia
  17. Biochemistry, physiology, and genetics of GPAT, AGPAT, and lipin enzymes in triglyceride synthesis. Takeuchi K, Reue K. Am J Physiol Endocrinol Metab. 2009 Jun;296(6):E1195-209. PubMed Europe PMC Scholia
  18. Subunit composition and substrate specificity of a MOF-containing histone acetyltransferase distinct from the male-specific lethal (MSL) complex. Cai Y, Jin J, Swanson SK, Cole MD, Choi SH, Florens L, et al. J Biol Chem. 2010 Feb 12;285(7):4268–72. PubMed Europe PMC Scholia
  19. Germline mutations in TMEM127 confer susceptibility to pheochromocytoma. Qin Y, Yao L, King EE, Buddavarapu K, Lenci RE, Chocron ES, et al. Nat Genet. 2010 Mar;42(3):229–33. PubMed Europe PMC Scholia
  20. DUSP26 negatively affects the proliferation of epithelial cells, an effect not mediated by dephosphorylation of MAPKs. Patterson KI, Brummer T, Daly RJ, O’Brien PM. Biochim Biophys Acta. 2010 Sep;1803(9):1003–12. PubMed Europe PMC Scholia
  21. The dual-specificity MAP kinase phosphatases: critical roles in development and cancer. Bermudez O, Pagès G, Gimond C. Am J Physiol Cell Physiol. 2010 Aug;299(2):C189-202. PubMed Europe PMC Scholia
  22. Arid5a cooperates with Sox9 to stimulate chondrocyte-specific transcription. Amano K, Hata K, Muramatsu S, Wakabayashi M, Takigawa Y, Ono K, et al. Mol Biol Cell. 2011 Apr 15;22(8):1300–11. PubMed Europe PMC Scholia
  23. ERK1/2 MAP kinases: structure, function, and regulation. Roskoski R Jr. Pharmacol Res. 2012 Aug;66(2):105–43. PubMed Europe PMC Scholia
  24. Structural basis for functional cooperation between tandem helicase cassettes in Brr2-mediated remodeling of the spliceosome. Santos KF, Jovin SM, Weber G, Pena V, Lührmann R, Wahl MC. Proc Natl Acad Sci U S A. 2012 Oct 23;109(43):17418–23. PubMed Europe PMC Scholia
  25. Rab26 modulates the cell surface transport of α2-adrenergic receptors from the Golgi. Li C, Fan Y, Lan TH, Lambert NA, Wu G. J Biol Chem. 2012 Dec 14;287(51):42784–94. PubMed Europe PMC Scholia
  26. The Lipid Transfer Protein StarD7: Structure, Function, and Regulation. Flores-Martin J, Rena V, Angeletti S, Panzetta-Dutari GM, Genti-Raimondi S. Int J Mol Sci. 2013 Mar 18;14(3):6170–86. PubMed Europe PMC Scholia
  27. IOP1 protein is an external component of the human cytosolic iron-sulfur cluster assembly (CIA) machinery and functions in the MMS19 protein-dependent CIA pathway. Seki M, Takeda Y, Iwai K, Tanaka K. J Biol Chem. 2013 Jun 7;288(23):16680–9. PubMed Europe PMC Scholia
  28. Human CIA2A-FAM96A and CIA2B-FAM96B integrate iron homeostasis and maturation of different subsets of cytosolic-nuclear iron-sulfur proteins. Stehling O, Mascarenhas J, Vashisht AA, Sheftel AD, Niggemeyer B, Rösser R, et al. Cell Metab. 2013 Aug 6;18(2):187–98. PubMed Europe PMC Scholia
  29. SAS1B protein [ovastacin] shows temporal and spatial restriction to oocytes in several eutherian orders and initiates translation at the primary to secondary follicle transition. Pires ES, Hlavin C, Macnamara E, Ishola-Gbenla K, Doerwaldt C, Chamberlain C, et al. Dev Dyn. 2013 Dec;242(12):1405–26. PubMed Europe PMC Scholia
  30. The α2B-adrenergic receptor is mutant in cortical myoclonus and epilepsy. De Fusco M, Vago R, Striano P, Di Bonaventura C, Zara F, Mei D, et al. Ann Neurol. 2014 Jan;75(1):77–87. PubMed Europe PMC Scholia
  31. Mg2+-dependent interactions of ATP with the cystathionine-β-synthase (CBS) domains of a magnesium transporter. Hirata Y, Funato Y, Takano Y, Miki H. J Biol Chem. 2014 May 23;289(21):14731–9. PubMed Europe PMC Scholia
  32. Membrane protein CNNM4-dependent Mg2+ efflux suppresses tumor progression. Funato Y, Yamazaki D, Mizukami S, Du L, Kikuchi K, Miki H. J Clin Invest. 2014 Dec;124(12):5398–410. PubMed Europe PMC Scholia
  33. Recurrent deletions and duplications of chromosome 2q11.2 and 2q13 are associated with variable outcomes. Riley KN, Catalano LM, Bernat JA, Adams SD, Martin DM, Lalani SR, et al. Am J Med Genet A. 2015 Nov;167A(11):2664–73. PubMed Europe PMC Scholia
  34. Homozygous missense mutation in the LMAN2L gene segregates with intellectual disability in a large consanguineous Pakistani family. Rafiullah R, Aslamkhan M, Paramasivam N, Thiel C, Mustafa G, Wiemann S, et al. J Med Genet. 2016 Feb;53(2):138–44. PubMed Europe PMC Scholia
  35. The Mg2+ transporter CNNM4 regulates sperm Ca2+ homeostasis and is essential for reproduction. Yamazaki D, Miyata H, Funato Y, Fujihara Y, Ikawa M, Miki H. J Cell Sci. 2016 May 1;129(9):1940–9. PubMed Europe PMC Scholia
  36. Mutations in genes encoding condensin complex proteins cause microcephaly through decatenation failure at mitosis. Martin CA, Murray JE, Carroll P, Leitch A, Mackenzie KJ, Halachev M, et al. Genes Dev. 2016 Oct 1;30(19):2158–72. PubMed Europe PMC Scholia
  37. PRL3 phosphatase active site is required for binding the putative magnesium transporter CNNM3. Zhang H, Kozlov G, Li X, Wu H, Gulerez I, Gehring K. Sci Rep. 2017 Mar 3;7(1):48. PubMed Europe PMC Scholia
  38. Regulation of atypical MAP kinases ERK3 and ERK4 by the phosphatase DUSP2. Perander M, Al-Mahdi R, Jensen TC, Nunn JAL, Kildalsen H, Johansen B, et al. Sci Rep. 2017 Mar 2;7:43471. PubMed Europe PMC Scholia
  39. O-Linked N-acetylglucosamine transferase 1 regulates global histone H4 acetylation via stabilization of the nonspecific lethal protein NSL3. Wu D, Zhao L, Feng Z, Yu C, Ding J, Wang L, et al. J Biol Chem. 2017 Jun 16;292(24):10014–25. PubMed Europe PMC Scholia
  40. An Atomic Structure of the Human Spliceosome. Zhang X, Yan C, Hang J, Finci LI, Lei J, Shi Y. Cell. 2017 May 18;169(5):918-929.e14. PubMed Europe PMC Scholia
  41. Cryo-EM Structure of a Pre-catalytic Human Spliceosome Primed for Activation. Bertram K, Agafonov DE, Dybkov O, Haselbach D, Leelaram MN, Will CL, et al. Cell. 2017 Aug 10;170(4):701-713.e11. PubMed Europe PMC Scholia
  42. PARL partitions the lipid transfer protein STARD7 between the cytosol and mitochondria. Saita S, Tatsuta T, Lampe PA, König T, Ohba Y, Langer T. EMBO J. 2018 Feb 15;37(4):e97909. PubMed Europe PMC Scholia
  43. Structure of a human catalytic step I spliceosome. Zhan X, Yan C, Zhang X, Lei J, Shi Y. Science. 2018 Feb 2;359(6375):537–45. PubMed Europe PMC Scholia
  44. Cytosolic HSC20 integrates de novo iron-sulfur cluster biogenesis with the CIAO1-mediated transfer to recipients. Kim KS, Maio N, Singh A, Rouault TA. Hum Mol Genet. 2018 Mar 1;27(5):837–52. PubMed Europe PMC Scholia
  45. Structure of the human activated spliceosome in three conformational states. Zhang X, Yan C, Zhan X, Li L, Lei J, Shi Y. Cell Res. 2018 Mar;28(3):307–22. PubMed Europe PMC Scholia
  46. Structure and Conformational Dynamics of the Human Spliceosomal Bact Complex. Haselbach D, Komarov I, Agafonov DE, Hartmuth K, Graf B, Dybkov O, et al. Cell. 2018 Jan 25;172(3):454-464.e11. PubMed Europe PMC Scholia
  47. Sema4C/PlexinB2 signaling controls breast cancer cell growth, hormonal dependence and tumorigenic potential. Gurrapu S, Pupo E, Franzolin G, Lanzetti L, Tamagnone L. Cell Death Differ. 2018 Jul;25(7):1259–75. PubMed Europe PMC Scholia
  48. Neuralized E3 Ubiquitin Protein Ligase 3 Is an Inducible Antiviral Effector That Inhibits Hepatitis C Virus Assembly by Targeting Viral E1 Glycoprotein. Zhao Y, Cao X, Guo M, Wang X, Yu T, Ye L, et al. J Virol. 2018 Oct 12;92(21):e01123-18. PubMed Europe PMC Scholia
  49. Structures of the human pre-catalytic spliceosome and its precursor spliceosome. Zhan X, Yan C, Zhang X, Lei J, Shi Y. Cell Res. 2018 Dec;28(12):1129–40. PubMed Europe PMC Scholia
  50. A human postcatalytic spliceosome structure reveals essential roles of metazoan factors for exon ligation. Fica SM, Oubridge C, Wilkinson ME, Newman AJ, Nagai K. Science. 2019 Feb 15;363(6428):710–4. PubMed Europe PMC Scholia
  51. Structures of the human spliceosomes before and after release of the ligated exon. Zhang X, Zhan X, Yan C, Zhang W, Liu D, Lei J, et al. Cell Res. 2019 Apr;29(4):274–85. PubMed Europe PMC Scholia
  52. Arid5a Regulation and the Roles of Arid5a in the Inflammatory Response and Disease. Nyati KK, Agarwal RG, Sharma P, Kishimoto T. Front Immunol. 2019 Dec 5;10:2790. PubMed Europe PMC Scholia
  53. Fer1L5, a Dysferlin Homologue Present in Vesicles and Involved in C2C12 Myoblast Fusion and Membrane Repair. Usha Kalyani R, Perinbam K, Jeyanthi P, Al-Dhabi NA, Valan Arasu M, Esmail GA, et al. Biology (Basel). 2020 Nov 9;9(11):386. PubMed Europe PMC Scholia