Familial partial lipodystrophy (WP5102)

Homo sapiens

Familial partial lipodystrophy (FPLD) is divided into six subtypes of the disease. It is not known yet which gene is mutated to cause FPLD type 1. Type 2 is caused by mutations in lamin A, which can be either through LMNA mutations or ZMPSTE24 mutations. Type 3 has been shown to be linked to PPARG mutations. The LIPE gene causes triacylglycerol breakdown. Mutations in this gene lead more breakdown and causes type 6 FPLD. CIDEC inhibits LIPE. Mutations in CIDEC lead to type 5 FPLD. PLIN1 stimulates CIDEC and mutations in this leads to type 4 FPLD. The phenotype related to all types of FPLD, is a loss of adipose tissue in the limbs and some metabolic abnormalities. With FPLD type 1 there is a loss of subcutaneous fat from the limbs. Patients with type 2 have an increased muscularity and a loss of fat in the limbs. There is also an accumulation of fat in the face and neck. In type 3 there is a loss of adipose tissue in the distal part of the limbs. Type 4 patients have shown to have small adipocytes, macrophage infiltration and fibrosis of adipose tissue. In type 5, there are small compartments in lipid droplets. Lastly, type 6 FPLD shows an increased visceral fat, hepatosteatosis, insulin resistance, and diabetes. Some patients may show muscular dystrophy and elevated serum creatine phosphokinase


Ulas Babayigit , Eric Weitz , and Egon Willighagen


last edited

Discuss this pathway

Check for ongoing discussions or start your own.

Cited In

Are you planning to include this pathway in your next publication? See How to Cite and add a link here to your paper once it's online.


Homo sapiens


Rare Diseases


Disease Ontology

familial partial lipodystrophy type 6 familial partial lipodystrophy type 3 familial partial lipodystrophy familial partial lipodystrophy type 1 familial partial lipodystrophy type 5 disease familial partial lipodystrophy type 2 familial partial lipodystrophy type 4

Pathway Ontology

disease pathway


Label Type Compact URI Comment
Diacylglycerol Metabolite chebi:85682
Farnesyl Metabolite chebi:86019
Monoacylglycerol Metabolite chebi:17408
CAAX Metabolite chebi:15356
Farnesyl-L-cysteine Metabolite chebi:86019
CAAX Metabolite chebi:15356
Farnesyl-L-cysteine Metabolite chebi:86019
Farnesyl-L-cysteine Metabolite chebi:86019
Triacylglycerol Metabolite chebi:17855
LMNB1 GeneProduct ensembl:ENSG00000113368
BANF1 GeneProduct ensembl:ENSG00000175334
LPL GeneProduct ensembl:ENSG00000175445
CEBPA GeneProduct ensembl:ENSG00000245848
FABP4 GeneProduct ensembl:ENSG00000170323
PRRX1 GeneProduct ensembl:ENSG00000116132
KLF9 GeneProduct ensembl:ENSG00000119138
KLF5 GeneProduct ensembl:ENSG00000102554
SREBF1 GeneProduct ensembl:ENSG00000072310
GATA2 GeneProduct ensembl:ENSG00000179348
GATA3 GeneProduct ensembl:ENSG00000107485
PNPLA2 GeneProduct ensembl:ENSG00000177666
STAT5B GeneProduct ensembl:ENSG00000173757
MGLL GeneProduct ensembl:ENSG00000074416
KLF2 GeneProduct ensembl:ENSG00000127528
LMNB2 GeneProduct ensembl:ENSG00000176619
CIDEA GeneProduct ensembl:ENSG00000176194
PPARG GeneProduct ensembl:ENSG00000132170
PPARA GeneProduct ensembl:ENSG00000186951
CIDEC GeneProduct ensembl:ENSG00000187288
PLIN1 GeneProduct ensembl:ENSG00000166819
LIPE GeneProduct ensembl:ENSG00000079435
ZMPSTE24 GeneProduct ensembl:ENSG00000084073
FNTA GeneProduct ensembl:ENSG00000168522
ICMT GeneProduct ensembl:ENSG00000116237
LMNA GeneProduct ensembl:ENSG00000160789
ZMPSTE24 GeneProduct ensembl:ENSG00000084073
Lamin A GeneProduct ensembl:ENSG00000160789
Lamin A GeneProduct ensembl:ENSG00000160789
Lamin B2 GeneProduct ensembl:ENSG00000176619
Lamin B1 GeneProduct ensembl:ENSG00000113368
AKT2 Protein ensembl:ENSG00000105221
MAPK9 Protein ensembl:ENSG00000050748
PI3K Protein ensembl:ENSG00000121879
Insulin Protein uniprot:A6XGL2
Prelamin-A/C Protein uniprot:P02545
Prelamin-A/C Protein uniprot:P02545
Prelamin-A/C Protein uniprot:P02545
Prelamin-A/C Protein uniprot:P02545


  1. Characterization of the human lipoprotein lipase (LPL) promoter: evidence of two cis-regulatory regions, LP-alpha and LP-beta, of importance for the differentiation-linked induction of the LPL gene during adipogenesis. Enerbäck S, Ohlsson BG, Samuelsson L, Bjursell G. Mol Cell Biol. 1992 Oct;12(10):4622–33. PubMed Europe PMC Scholia
  2. The nuclear lamina and its functions in the nucleus. Gruenbaum Y, Goldman RD, Meyuhas R, Mills E, Margalit A, Fridkin A, et al. Int Rev Cytol. 2003;226:1–62. PubMed Europe PMC Scholia
  3. From old organisms to new molecules: integrative biology and therapeutic targets in accelerated human ageing. Cox LS, Faragher RGA. Cell Mol Life Sci. 2007 Oct;64(19–20):2620–41. PubMed Europe PMC Scholia
  4. Krüppel-like family of transcription factors: an emerging new frontier in fat biology. Brey CW, Nelder MP, Hailemariam T, Gaugler R, Hashmi S. Int J Biol Sci. 2009 Oct 1;5(6):622–36. PubMed Europe PMC Scholia
  5. CAAX-box protein, prenylation process and carcinogenesis. Gao J, Liao J, Yang GY. Am J Transl Res. 2009 May 25;1(3):312–25. PubMed Europe PMC Scholia
  6. The role of lipid droplets in metabolic disease in rodents and humans. Greenberg AS, Coleman RA, Kraemer FB, McManaman JL, Obin MS, Puri V, et al. J Clin Invest. 2011 Jun;121(6):2102–10. PubMed Europe PMC Scholia
  7. Differential regulation of CIDEA and CIDEC expression by insulin via Akt1/2- and JNK2-dependent pathways in human adipocytes. Ito M, Nagasawa M, Omae N, Ide T, Akasaka Y, Murakami K. J Lipid Res. 2011 Aug;52(8):1450–60. PubMed Europe PMC Scholia
  8. The lamin protein family. Dittmer TA, Misteli T. Genome Biol. 2011;12(5):222. PubMed Europe PMC Scholia
  9. Cidea controls lipid droplet fusion and lipid storage in brown and white adipose tissue. Wu L, Zhou L, Chen C, Gong J, Xu L, Ye J, et al. Sci China Life Sci. 2014 Jan;57(1):107–16. PubMed Europe PMC Scholia
  10. CIDEC/FSP27 is regulated by peroxisome proliferator-activated receptor alpha and plays a critical role in fasting- and diet-induced hepatosteatosis. Langhi C, Baldán Á. Hepatology. 2015 Apr;61(4):1227–38. PubMed Europe PMC Scholia
  11. Regulation of PPARγ and CIDEC expression by adenovirus 36 in adipocyte differentiation. Jiao Y, Aisa Y, Liang X, Nuermaimaiti N, Gong X, Zhang Z, et al. Mol Cell Biochem. 2017 Apr;428(1–2):1–8. PubMed Europe PMC Scholia
  12. Cycling our way to fit fat. Townsend LK, Knuth CM, Wright DC. Physiol Rep. 2017 Apr;5(7):e13247. PubMed Europe PMC Scholia
  13. Lipodystrophy Syndromes: Presentation and Treatment. Akinci B, Sahinoz M, Oral E. In: Feingold KR, Anawalt B, Blackman MR, Boyce A, Chrousos G, Corpas E, et al., editors. Endotext. South Dartmouth (MA): MDText.com, Inc.; 2018. PubMed Europe PMC Scholia
  14. Gene-gene and gene-environment interactions in lipodystrophy: Lessons learned from natural PPARγ mutants. Broekema MF, Savage DB, Monajemi H, Kalkhoven E. Biochim Biophys Acta Mol Cell Biol Lipids. 2019 May;1864(5):715–32. PubMed Europe PMC Scholia
  15. CIDE Proteins in Human Health and Disease. Slayton M, Gupta A, Balakrishnan B, Puri V. Cells. 2019 Mar 13;8(3):238. PubMed Europe PMC Scholia
  16. An Epistatic Interaction between Pnpla2 and Lipe Reveals New Pathways of Adipose Tissue Lipolysis. Zhang X, Zhang CC, Yang H, Soni KG, Wang SP, Mitchell GA, et al. Cells. 2019 Apr 29;8(5):395. PubMed Europe PMC Scholia
  17. Inhibition of cell death inducing DNA fragmentation factor-α-like effector c (CIDEC) by tumor necrosis factor-α induces lipolysis and inflammation in calf adipocytes. Fan M, Du X, Chen X, Bai H, Loor JJ, Shen T, et al. J Dairy Sci. 2021 May;104(5):6134–45. PubMed Europe PMC Scholia