Aryl hydrocarbon receptor (WP3226)

Bos taurus

The Aryl Hydrocarbon receptor (AhR) is ligand activated transcription factor that regulates wide spectrum of gene expression. The main mediator of AhR is 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) or polycyclic aromatic hydrocarbons which are widespread environmental pollutant causing a variety of severe health effects, e.g. immunosuppression, carcinogenesis and hepatotoxicity. AhR is a member of basic helix-loop-helix-Per-Arnt-Sim (bHLH-PAS) superfamily of transcription factors. In the absence of ligand, the AhR can be found in the cytosol, bound to a dimer of the heat shock protein of 90 kDa (Hsp90) and the immunophilin-like protein, AIP (also known as XAP2 and ARA9). Upon ligand binding, the AHR translocates to the nucleus and binds with ARNT. The AHR/ARNT heterodimer binds to xenobiotic response elements and regulates a diverse set of genes

Authors

Martina Summer-Kutmon , Egon Willighagen , Anders Riutta , Alex Pico , and Eric Weitz

Activity

last edited

Discuss this pathway

Check for ongoing discussions or start your own.

Cited In

Are you planning to include this pathway in your next publication? See How to Cite and add a link here to your paper once it's online.

Organisms

Bos taurus

Communities

Annotations

Pathway Ontology

regulatory pathway signaling pathway

Disease Ontology

functioning pituitary adenoma

Participants

Label Type Compact URI Comment
TCDD Metabolite chebi:28119
PAH Metabolite chebi:33848
TCDD Metabolite chebi:28119
PAH Metabolite chebi:33848
KLF6 GeneProduct ensembl:ENSBTAG00000015188 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:1316
VEGFA GeneProduct ensembl:ENSBTAG00000047561 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:7422
CCL1 GeneProduct ensembl:ENSBTAG00000008832 PMID: 16679317 PAHs induce expression of the chemokine CCL1 in an AhR- and calcium-dependent manner.
HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:6346
CDKN1B GeneProduct ensembl:ENSBTAG00000018254 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:1027
ARNT GeneProduct ensembl:ENSBTAG00000021037 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:405
AIP GeneProduct ensembl:ENSBTAG00000010478 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000110711
CYP1A1 GeneProduct ensembl:ENSBTAG00000001021 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:1543
EGFR GeneProduct ensembl:ENSBTAG00000011628 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:1956
AIP GeneProduct ensembl:ENSBTAG00000010478 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000110711
AHR GeneProduct ensembl:ENSBTAG00000007746 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:196
AIP GeneProduct ensembl:ENSBTAG00000010478 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000110711
AHR GeneProduct ensembl:ENSBTAG00000007746 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:196
AHR GeneProduct ensembl:ENSBTAG00000007746 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:196
HSP90AA1 GeneProduct ensembl:ENSBTAG00000006270 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:3320
HSP90AA1 GeneProduct ensembl:ENSBTAG00000006270 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:3320
TNF GeneProduct ensembl:ENSBTAG00000025471 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:7124
CDC37 GeneProduct ensembl:ENSBTAG00000011699 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:11140
RAF1 GeneProduct ensembl:ENSBTAG00000045748 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000132155
MAP2K1 GeneProduct ensembl:ENSBTAG00000033983 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000169032
PGHS-2 GeneProduct ensembl:ENSBTAG00000014127 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:5743
PSRC1 GeneProduct ensembl:ENSBTAG00000018806 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:84722
RELA GeneProduct ensembl:ENSBTAG00000013895 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:5970
NFKB1 GeneProduct ensembl:ENSBTAG00000020270 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:4790
RELA GeneProduct ensembl:ENSBTAG00000013895 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:5970
NFKB1 GeneProduct ensembl:ENSBTAG00000020270 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:4790
PSRC1 GeneProduct ensembl:ENSBTAG00000018806 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:84722
CD36 GeneProduct ensembl:ENSBTAG00000014220 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:948
NFE2L2 GeneProduct ensembl:ENSBTAG00000019255 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:4780
CYP1A2 GeneProduct ensembl:ENSBTAG00000000085 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:1544
CYP1B1 GeneProduct ensembl:ENSBTAG00000010531 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:1545
CDKN1A GeneProduct ensembl:ENSBTAG00000008353 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:1026
CDK2 GeneProduct ensembl:ENSBTAG00000004021 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:1017
RB1 GeneProduct ensembl:ENSBTAG00000006640 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:5925
E2F1 GeneProduct ensembl:ENSBTAG00000003971 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:1869
AHRR GeneProduct ensembl:ENSBTAG00000026527 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:57491
NRAS GeneProduct ensembl:ENSBTAG00000046797 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000213281
HRAS GeneProduct ensembl:ENSBTAG00000046644 HomologyConvert: Homo sapiens to Bos taurus: Original ID = En:ENSG00000174775
NQO1 Protein ensembl:ENSBTAG00000020632 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:1728
HSP90AA1 Protein ensembl:ENSBTAG00000006270 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:3320
ESR1 Protein ensembl:ENSBTAG00000007159 Estrogen Receptor
HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:2099
EP300 Protein ensembl:ENSBTAG00000016198 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:2033
RB1 Protein ensembl:ENSBTAG00000006640 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P06400
PLAGL1 Protein ensembl:ENSBTAG00000026523 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:5325
RET Protein ensembl:ENSBTAG00000000570 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:5979
MYC Protein ensembl:ENSBTAG00000008409 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:4609
SRC Protein ensembl:ENSBTAG00000008938 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:6714
MAPK1 Protein ensembl:ENSBTAG00000010312 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:5594
EP300 Protein ensembl:ENSBTAG00000016198 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:2033
NCOA7 Protein ensembl:ENSBTAG00000011911 Official Symbol= NCOA7
HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:135112
NRIP1 Protein ensembl:ENSBTAG00000047293 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:8204
CYP1A1 Protein ensembl:ENSBTAG00000001021 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:1543
LPL Protein ensembl:ENSBTAG00000012855 lipoprotein lipase
HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:4023
FGF21 Protein ensembl:ENSBTAG00000011624 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:26291
HPGDS Protein ensembl:ENSBTAG00000017073 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:27306
GCLC Protein ensembl:ENSBTAG00000015571 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:2729
NRIP1 Protein ensembl:ENSBTAG00000047293 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:8204
NF1 Protein ensembl:ENSBTAG00000011829 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:4763
NCOA7 Protein ensembl:ENSBTAG00000011911 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:135112
NCOR2 Protein ensembl:ENSBTAG00000024603 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:9612
EP300 Protein ensembl:ENSBTAG00000016198 HomologyConvert: Homo sapiens to Bos taurus: Original ID = L:2033

References

  1. Stereospecific, high affinity binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin by hepatic cytosol. Evidence that the binding species is receptor for induction of aryl hydrocarbon hydroxylase. Poland A, Glover E, Kende AS. J Biol Chem. 1976 Aug 25;251(16):4936–46. PubMed Europe PMC Scholia
  2. Human AH locus polymorphism and cancer: inducibility of CYP1A1 and other genes by combustion products and dioxin. Nebert DW, Petersen DD, Puga A. Pharmacogenetics. 1991 Nov;1(2):68–78. PubMed Europe PMC Scholia
  3. Association of the Ah receptor with the 90-kDa heat shock protein. Perdew GH. J Biol Chem. 1988 Sep 25;263(27):13802–5. PubMed Europe PMC Scholia
  4. 2,3,7,8-Tetrachlorodibenzo-p-dioxin causes an increase in protein kinases associated with epidermal growth factor receptor in the hepatic plasma membrane. Madhukar BV, Ebner K, Matsumura F, Bombick DW, Brewster DW, Kawamoto T. J Biochem Toxicol. 1988;3:261–77. PubMed Europe PMC Scholia
  5. Effects of in vivo-administered 2,3,7,8-tetrachlorodibenzo-p-dioxin on receptor binding of epidermal growth factor in the hepatic plasma membrane of rat, guinea pig, mouse, and hamster. Madhukar BV, Brewster DW, Matsumura F. Proc Natl Acad Sci U S A. 1984 Dec;81(23):7407–11. PubMed Europe PMC Scholia
  6. Differential effects of cytokines on the inducible expression of CYP1A1, CYP1A2, and CYP3A4 in human hepatocytes in primary culture. Muntané-Relat J, Ourlin JC, Domergue J, Maurel P. Hepatology. 1995 Oct;22(4 Pt 1):1143–53. PubMed Europe PMC Scholia
  7. The human CYP1A2 gene and induction by 3-methylcholanthrene. A region of DNA that supports AH-receptor binding and promoter-specific induction. Quattrochi LC, Vu T, Tukey RH. J Biol Chem. 1994 Mar 4;269(9):6949–54. PubMed Europe PMC Scholia
  8. Role of the aryl hydrocarbon receptor nuclear translocator protein in aryl hydrocarbon (dioxin) receptor action. Probst MR, Reisz-Porszasz S, Agbunag RV, Ong MS, Hankinson O. Mol Pharmacol. 1993 Sep;44(3):511–8. PubMed Europe PMC Scholia
  9. Isolation and characterization of the human cytochrome P450 CYP1B1 gene. Tang YM, Wo YY, Stewart J, Hawkins AL, Griffin CA, Sutter TR, et al. J Biol Chem. 1996 Nov 8;271(45):28324–30. PubMed Europe PMC Scholia
  10. Identification of c-Src as the integral component of the cytosolic Ah receptor complex, transducing the signal of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) through the protein phosphorylation pathway. Enan E, Matsumura F. Biochem Pharmacol. 1996 Nov 22;52(10):1599–612. PubMed Europe PMC Scholia
  11. 2,3,7,8-Tetrachlorodibenzo-p-dioxin-induced activation of a protein tyrosine kinase, pp60src, in murine hepatic cytosol using a cell-free system. Blankenship A, Matsumura F. Mol Pharmacol. 1997 Oct;52(4):667–75. PubMed Europe PMC Scholia
  12. Identification of cdk2 binding sites on the p27Kip1 cyclin-dependent kinase inhibitor. Kwon TK, Nordin AA. Oncogene. 1998 Feb 12;16(6):755–62. PubMed Europe PMC Scholia
  13. Specificity within the EGF family/ErbB receptor family signaling network. Riese DJ 2nd, Stern DF. Bioessays. 1998 Jan;20(1):41–8. PubMed Europe PMC Scholia
  14. Transcriptionally active heterodimer formation of an Arnt-like PAS protein, Arnt3, with HIF-1a, HLF, and clock. Takahata S, Sogawa K, Kobayashi A, Ema M, Mimura J, Ozaki N, et al. Biochem Biophys Res Commun. 1998 Jul 30;248(3):789–94. PubMed Europe PMC Scholia
  15. A direct interaction between the aryl hydrocarbon receptor and retinoblastoma protein. Linking dioxin signaling to the cell cycle. Ge NL, Elferink CJ. J Biol Chem. 1998 Aug 28;273(35):22708–13. PubMed Europe PMC Scholia
  16. A new pathway for mitogen-dependent cdk2 regulation uncovered in p27(Kip1)-deficient cells. Coats S, Whyte P, Fero ML, Lacy S, Chung G, Randel E, et al. Curr Biol. 1999 Feb 25;9(4):163–73. PubMed Europe PMC Scholia
  17. c-Src-mediated phosphorylation of the epidermal growth factor receptor on Tyr845 and Tyr1101 is associated with modulation of receptor function. Biscardi JS, Maa MC, Tice DA, Cox ME, Leu TH, Parsons SJ. J Biol Chem. 1999 Mar 19;274(12):8335–43. PubMed Europe PMC Scholia
  18. Evidence that the co-chaperone p23 regulates ligand responsiveness of the dioxin (Aryl hydrocarbon) receptor. Kazlauskas A, Poellinger L, Pongratz I. J Biol Chem. 1999 May 7;274(19):13519–24. PubMed Europe PMC Scholia
  19. Interactions of nuclear receptor coactivator/corepressor proteins with the aryl hydrocarbon receptor complex. Nguyen TA, Hoivik D, Lee JE, Safe S. Arch Biochem Biophys. 1999 Jul 15;367(2):250–7. PubMed Europe PMC Scholia
  20. p27(Kip1) induction and inhibition of proliferation by the intracellular Ah receptor in developing thymus and hepatoma cells. Kolluri SK, Weiss C, Koff A, Göttlicher M. Genes Dev. 1999 Jul 1;13(13):1742–53. PubMed Europe PMC Scholia
  21. The aryl hydrocarbon receptor interacts with estrogen receptor alpha and orphan receptors COUP-TFI and ERRalpha1. Klinge CM, Kaur K, Swanson HI. Arch Biochem Biophys. 2000 Jan 1;373(1):163–74. PubMed Europe PMC Scholia
  22. Epstein-Barr virus encoded nuclear protein EBNA-3 binds XAP-2, a protein associated with Hepatitis B virus X antigen. Kashuba E, Kashuba V, Pokrovskaja K, Klein G, Szekely L. Oncogene. 2000 Mar 30;19(14):1801–6. PubMed Europe PMC Scholia
  23. Binding of aryl hydrocarbon receptor (AhR) to AhR-interacting protein. The role of hsp90. Bell DR, Poland A. J Biol Chem. 2000 Nov 17;275(46):36407–14. PubMed Europe PMC Scholia
  24. Expression of the aryl hydrocarbon receptor/transcription factor (AhR) and AhR-regulated CYP1 gene transcripts in a rat model of mammary tumorigenesis. Trombino AF, Near RI, Matulka RA, Yang S, Hafer LJ, Toselli PA, et al. Breast Cancer Res Treat. 2000 Sep;63(2):117–31. PubMed Europe PMC Scholia
  25. The RelA NF-kappaB subunit and the aryl hydrocarbon receptor (AhR) cooperate to transactivate the c-myc promoter in mammary cells. Kim DW, Gazourian L, Quadri SA, Romieu-Mourez R, Sherr DH, Sonenshein GE. Oncogene. 2000 Nov 16;19(48):5498–506. PubMed Europe PMC Scholia
  26. Maximal aryl hydrocarbon receptor activity depends on an interaction with the retinoblastoma protein. Elferink CJ, Ge NL, Levine A. Mol Pharmacol. 2001 Apr;59(4):664–73. PubMed Europe PMC Scholia
  27. Mechanism of suppression of cytochrome P-450 1A1 expression by tumor necrosis factor-alpha and lipopolysaccharide. Ke S, Rabson AB, Germino JF, Gallo MA, Tian Y. J Biol Chem. 2001 Oct 26;276(43):39638–44. PubMed Europe PMC Scholia
  28. Metabolic activation of polycyclic aromatic hydrocarbons and other procarcinogens by cytochromes P450 1A1 and P450 1B1 allelic variants and other human cytochromes P450 in Salmonella typhimurium NM2009. Shimada T, Oda Y, Gillam EM, Guengerich FP, Inoue K. Drug Metab Dispos. 2001 Sep;29(9):1176–82. PubMed Europe PMC Scholia
  29. Binding of polycyclic aromatic hydrocarbons (PAHs) to teleost aryl hydrocarbon receptors (AHRs). Billiard SM, Hahn ME, Franks DG, Peterson RE, Bols NC, Hodson PV. Comp Biochem Physiol B Biochem Mol Biol. 2002 Sep;133(1):55–68. PubMed Europe PMC Scholia
  30. TCDD-mediated alterations in the AhR-dependent pathway in Seveso, Italy, 20 years after the accident. Landi MT, Bertazzi PA, Baccarelli A, Consonni D, Masten S, Lucier G, et al. Carcinogenesis. 2003 Apr;24(4):673–80. PubMed Europe PMC Scholia
  31. Decreased p21 levels are required for efficient restart of DNA synthesis after S phase block. Gottifredi V, McKinney K, Poyurovsky MV, Prives C. J Biol Chem. 2004 Feb 13;279(7):5802–10. PubMed Europe PMC Scholia
  32. The aryl hydrocarbon (Ah) receptor transcriptional regulator hepatitis B virus X-associated protein 2 antagonizes p23 binding to Ah receptor-Hsp90 complexes and is dispensable for receptor function. Hollingshead BD, Petrulis JR, Perdew GH. J Biol Chem. 2004 Oct 29;279(44):45652–61. PubMed Europe PMC Scholia
  33. Transcriptional regulation of NF-E2 p45-related factor (NRF2) expression by the aryl hydrocarbon receptor-xenobiotic response element signaling pathway: direct cross-talk between phase I and II drug-metabolizing enzymes. Miao W, Hu L, Scrivens PJ, Batist G. J Biol Chem. 2005 May 27;280(21):20340–8. PubMed Europe PMC Scholia
  34. ER alpha-AHR-ARNT protein-protein interactions mediate estradiol-dependent transrepression of dioxin-inducible gene transcription. Beischlag TV, Perdew GH. J Biol Chem. 2005 Jun 3;280(22):21607–11. PubMed Europe PMC Scholia
  35. Aryl hydrocarbon receptor- and calcium-dependent induction of the chemokine CCL1 by the environmental contaminant benzo[a]pyrene. N’Diaye M, Le Ferrec E, Lagadic-Gossmann D, Corre S, Gilot D, Lecureur V, et al. J Biol Chem. 2006 Jul 21;281(29):19906–15. PubMed Europe PMC Scholia
  36. Role of dioxin response element and nuclear factor-kappaB motifs in 2,3,7,8-tetrachlorodibenzo-p-dioxin-mediated regulation of Fas and Fas ligand expression. Singh NP, Nagarkatti M, Nagarkatti PS. Mol Pharmacol. 2007 Jan;71(1):145–57. PubMed Europe PMC Scholia
  37. NRF2 modulates aryl hydrocarbon receptor signaling: influence on adipogenesis. Shin S, Wakabayashi N, Misra V, Biswal S, Lee GH, Agoston ES, et al. Mol Cell Biol. 2007 Oct;27(20):7188–97. PubMed Europe PMC Scholia
  38. Signaling pathway for 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced TNF-alpha production in differentiated THP-1 human macrophages. Cheon H, Woo YS, Lee JY, Kim HS, Kim HJ, Cho S, et al. Exp Mol Med. 2007 Aug 31;39(4):524–34. PubMed Europe PMC Scholia
  39. Dioxin-mediated up-regulation of aryl hydrocarbon receptor target genes is dependent on the calcium/calmodulin/CaMKIalpha pathway. Monteiro P, Gilot D, Le Ferrec E, Rauch C, Lagadic-Gossmann D, Fardel O. Mol Pharmacol. 2008 Mar;73(3):769–77. PubMed Europe PMC Scholia
  40. Tumor necrosis factor-alpha potentiates genotoxic effects of benzo[a]pyrene in rat liver epithelial cells through upregulation of cytochrome P450 1B1 expression. Umannová L, Machala M, Topinka J, Nováková Z, Milcová A, Kozubík A, et al. Mutat Res. 2008 Apr 2;640(1–2):162–9. PubMed Europe PMC Scholia
  41. Aryl hydrocarbon receptor regulates Stat1 activation and participates in the development of Th17 cells. Kimura A, Naka T, Nohara K, Fujii-Kuriyama Y, Kishimoto T. Proc Natl Acad Sci U S A. 2008 Jul 15;105(28):9721–6. PubMed Europe PMC Scholia
  42. Regulation of insulin-like growth factor binding protein-1 and lipoprotein lipase by the aryl hydrocarbon receptor. Minami K, Nakajima M, Fujiki Y, Katoh M, Gonzalez FJ, Yokoi T. J Toxicol Sci. 2008 Oct;33(4):405–13. PubMed Europe PMC Scholia
  43. HDAC6 modulates Hsp90 chaperone activity and regulates activation of aryl hydrocarbon receptor signaling. Kekatpure VD, Dannenberg AJ, Subbaramaiah K. J Biol Chem. 2009 Mar 20;284(12):7436–45. PubMed Europe PMC Scholia
  44. Epidermal growth factor-activated aryl hydrocarbon receptor nuclear translocator/HIF-1{beta} signal pathway up-regulates cyclooxygenase-2 gene expression associated with squamous cell carcinoma. Chang KY, Shen MR, Lee MY, Wang WL, Su WC, Chang WC, et al. J Biol Chem. 2009 Apr 10;284(15):9908–16. PubMed Europe PMC Scholia
  45. EGF receptor signaling blocks aryl hydrocarbon receptor-mediated transcription and cell differentiation in human epidermal keratinocytes. Sutter CH, Yin H, Li Y, Mammen JS, Bodreddigari S, Stevens G, et al. Proc Natl Acad Sci U S A. 2009 Mar 17;106(11):4266–71. PubMed Europe PMC Scholia
  46. The tyrosine kinase receptor RET interacts in vivo with aryl hydrocarbon receptor-interacting protein to alter survivin availability. Vargiolu M, Fusco D, Kurelac I, Dirnberger D, Baumeister R, Morra I, et al. J Clin Endocrinol Metab. 2009 Jul;94(7):2571–8. PubMed Europe PMC Scholia
  47. Introducing the “TCDD-inducible AhR-Nrf2 gene battery.” Yeager RL, Reisman SA, Aleksunes LM, Klaassen CD. Toxicol Sci. 2009 Oct;111(2):238–46. PubMed Europe PMC Scholia
  48. Dioxin increases the interaction between aryl hydrocarbon receptor and estrogen receptor alpha at human promoters. Ahmed S, Valen E, Sandelin A, Matthews J. Toxicol Sci. 2009 Oct;111(2):254–66. PubMed Europe PMC Scholia
  49. Dioxin receptor deficiency impairs angiogenesis by a mechanism involving VEGF-A depletion in the endothelium and transforming growth factor-beta overexpression in the stroma. Roman AC, Carvajal-Gonzalez JM, Rico-Leo EM, Fernandez-Salguero PM. J Biol Chem. 2009 Sep 11;284(37):25135–48. PubMed Europe PMC Scholia
  50. Aryl hydrocarbon receptor and NF-E2-related factor 2 are key regulators of human MRP4 expression. Xu S, Weerachayaphorn J, Cai SY, Soroka CJ, Boyer JL. Am J Physiol Gastrointest Liver Physiol. 2010 Jul;299(1):G126-35. PubMed Europe PMC Scholia
  51. Ligand displaces heat shock protein 90 from overlapping binding sites within the aryl hydrocarbon receptor ligand-binding domain. Soshilov A, Denison MS. J Biol Chem. 2011 Oct 7;286(40):35275–82. PubMed Europe PMC Scholia
  52. Somatostatin analogs modulate AIP in somatotroph adenomas: the role of the ZAC1 pathway. Chahal HS, Trivellin G, Leontiou CA, Alband N, Fowkes RC, Tahir A, et al. J Clin Endocrinol Metab. 2012 Aug;97(8):E1411-20. PubMed Europe PMC Scholia
  53. High-resolution genome-wide mapping of AHR and ARNT binding sites by ChIP-Seq. Lo R, Matthews J. Toxicol Sci. 2012 Dec;130(2):349–61. PubMed Europe PMC Scholia
  54. The tumor suppressor Kruppel-like factor 6 is a novel aryl hydrocarbon receptor DNA binding partner. Wilson SR, Joshi AD, Elferink CJ. J Pharmacol Exp Ther. 2013 Jun;345(3):419–29. PubMed Europe PMC Scholia