Neurotransmitter clearance in synaptic cleft (WP3165)

Bos taurus

Neurotransmitter released in the synaptic cleft binds to specific receptors on the post-synaptic cell and the excess of the neurotransmitter is cleared to prevent over activation of the post-synaptic cell. The neurotransmitter is cleared by either re-uptake by the pre-synaptic neuron, diffusion in the perisynaptic area, uptake by astrocytes surrounding the synaptic cleft or enzymatic degradation of the neurotransmitter.
This topic will be annotated in a future release.Original Pathway at Reactome: http://www.reactome.org/PathwayBrowser/#DB=gk_current&FOCUS_SPECIES_ID=48887&FOCUS_PATHWAY_ID=112311

Authors

Martina Summer-Kutmon , Elisa Cirillo , and Eric Weitz

Activity

last edited

Discuss this pathway

Check for ongoing discussions or start your own.

Cited In

Are you planning to include this pathway in your next publication? See How to Cite and add a link here to your paper once it's online.

Organisms

Bos taurus

Communities

Annotations

Pathway Ontology

signaling pathway pertinent to the brain and nervous system signaling pathway

Participants

Label Type Compact URI Comment
AcCho Metabolite chebi:15355
Cho Metabolite chebi:15354
NAd Metabolite chebi:18357
NAd Metabolite chebi:18357
Na+ Metabolite chebi:29101
DA Metabolite chebi:18243
DA Metabolite chebi:18243
Na+ Metabolite chebi:29101
AdoMet Metabolite chebi:15414
AdoHcy Metabolite chebi:16680
CDNB Metabolite chebi:34718
O2 Metabolite chebi:15379
H2O Metabolite chebi:15377
H2O2 Metabolite chebi:16240
5HT-N-CH3 Metabolite chebi:3210
NH3 Metabolite chebi:16134
FAD [mitochondrialouter membrane] Metabolite chebi:16238
H2O Metabolite chebi:15377
O2 Metabolite chebi:15379
NH3 Metabolite chebi:16134
HCYS Metabolite chebi:17230
5HT-N-CH3 Metabolite chebi:3210
AdoMet Metabolite chebi:15414
5HT Metabolite chebi:28790
5HT Metabolite chebi:28790
Na+ Metabolite chebi:29101
Na+ Metabolite chebi:29101
HIALD Metabolite chebi:50157
NAD+ Metabolite chebi:15846
HIAA Metabolite chebi:27823
H+ Metabolite chebi:15378
NADH Metabolite chebi:16908
H2O Metabolite chebi:15377
HIALD Metabolite chebi:50157
H2O2 Metabolite chebi:16240
NH3 Metabolite chebi:16134
H2O Metabolite chebi:15377
acetate Metabolite chebi:30089
SLC22A2 Protein ensembl:ENSBTAG00000009583 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:O15244
SLC6A3 Protein ensembl:ENSBTAG00000015843 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:Q01959
COMT Protein ensembl:ENSBTAG00000019516 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P21964
MAOA Protein ensembl:ENSBTAG00000016206 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P21397
ALDH2 Protein ensembl:ENSBTAG00000008743 HomologyConvert: Homo sapiens to Bos taurus: Original ID = S:P05091

References

  1. Two aldehyde dehydrogenases from human liver. Isolation via affinity chromatography and characterization of the isozymes. Greenfield NJ, Pietruszko R. Biochim Biophys Acta. 1977 Jul 8;483(1):35–45. PubMed Europe PMC Scholia
  2. The effect of elimination of intersubunit disulfide bonds on the activity, assembly, and secretion of recombinant human acetylcholinesterase. Expression of acetylcholinesterase Cys-580----Ala mutant. Velan B, Grosfeld H, Kronman C, Leitner M, Gozes Y, Lazar A, et al. J Biol Chem. 1991 Dec 15;266(35):23977–84. PubMed Europe PMC Scholia
  3. Mitochondrial aldehyde dehydrogenase from human liver. Primary structure, differences in relation to the cytosolic enzyme, and functional correlations. Hempel J, Kaiser R, Jörnvall H. Eur J Biochem. 1985 Nov 15;153(1):13–28. PubMed Europe PMC Scholia
  4. The deamination of dopamine by human brain monoamine oxidase. Specificity for the two enzyme forms in seven brain regions. O’Carroll AM, Fowler CJ, Phillips JP, Tobbia I, Tipton KF. Naunyn Schmiedebergs Arch Pharmacol. 1983 Apr;322(3):198–202. PubMed Europe PMC Scholia
  5. Changes in serotonin metabolism during treatment with the aldehyde dehydrogenase inhibitors disulfiram and cyanamide. Beck O, Helander A, Carlsson S, Borg S. Pharmacol Toxicol. 1995 Nov;77(5):323–6. PubMed Europe PMC Scholia
  6. Cloning and characterization of two human polyspecific organic cation transporters. Gorboulev V, Ulzheimer JC, Akhoundova A, Ulzheimer-Teuber I, Karbach U, Quester S, et al. DNA Cell Biol. 1997 Jul;16(7):871–81. PubMed Europe PMC Scholia
  7. Human dopamine transporter gene: coding region conservation among normal, Tourette’s disorder, alcohol dependence and attention-deficit hyperactivity disorder populations. Vandenbergh DJ, Thompson MD, Cook EH, Bendahhou E, Nguyen T, Krasowski MD, et al. Mol Psychiatry. 2000 May;5(3):283–92. PubMed Europe PMC Scholia
  8. Structures of recombinant native and E202Q mutant human acetylcholinesterase complexed with the snake-venom toxin fasciculin-II. Kryger G, Harel M, Giles K, Toker L, Velan B, Lazar A, et al. Acta Crystallogr D Biol Crystallogr. 2000 Nov;56(Pt 11):1385–94. PubMed Europe PMC Scholia
  9. Monoamine metabolism and behavioral responses to ethanol in mitochondrial aldehyde dehydrogenase knockout mice. Fernandez E, Koek W, Ran Q, Gerhardt GA, France CP, Strong R. Alcohol Clin Exp Res. 2006 Oct;30(10):1650–8. PubMed Europe PMC Scholia
  10. Long story short: the serotonin transporter in emotion regulation and social cognition. Canli T, Lesch KP. Nat Neurosci. 2007 Sep;10(9):1103–9. PubMed Europe PMC Scholia
  11. Rational design of a drug for Alzheimer’s disease with cholinesterase inhibitory and neuroprotective activity. Weinstock M, Groner E. Chem Biol Interact. 2008 Sep 25;175(1–3):216–21. PubMed Europe PMC Scholia