Spinal cord injury (WP2433)

Rattus norvegicus

This pathway provides an overview of cell types, therapeutic targets, drugs, new proposed targets and pathways implicated in spinal cord injury. Spinal cord injury is a complex multi-step process that involves the regulation of gene expression and signaling in motor neurons, oligodentrocytes, microglia, and astrocytes that trigger immediate immune responses lasting several weeks. Within 24 hours, chemoattractants and cytokines released from the site of injury activate neutrophils which further recruit B and T cells or recruit monocytes that ultimately result in infiltration and activation by microglia and macrophages. These immune responses result in inflammation, excitotoxicity, cell death, formation of glial scar, and suppression of axonal regeneration. An increase in the expression of cell cycle genes further results in proliferation of astrocytes and microglia that leads to apoptosis and necrosis of oligodentrocytes and neurons.

Authors

Nathan Salomonis , Egon Willighagen , Deborah Micael , Chris Evelo , Alex Pico , Martina Summer-Kutmon , Linda Rieswijk , and Eric Weitz

Activity

last edited

Discuss this pathway

Check for ongoing discussions or start your own.

Cited In

Are you planning to include this pathway in your next publication? See How to Cite and add a link here to your paper once it's online.

Organisms

Rattus norvegicus

Communities

Annotations

Disease Ontology

spinal cord disease post-traumatic stress disorder

Cell Type Ontology

astrocyte of the spinal cord

Pathway Ontology

disease pathway

Participants

Label Type Compact URI Comment
LTB4 Metabolite pubchem.compound:169
NO Metabolite pubchem.compound:145068
melittin Metabolite pubchem.compound:16133648
FK506 Metabolite cas:104987-11-3
FK506 Metabolite cas:104987-11-3
FK506 Metabolite cas:104987-11-3
FK506 Metabolite cas:104987-11-3
Arachidonic acid Metabolite hmdb:HMDB0001043
PGH2 Metabolite hmdb:HMDB0001381
Olomoucine Metabolite hmdb:HMDB0035233
Ngfr GeneProduct ensembl:ENSRNOG00000005392
Tnfsf13 GeneProduct ensembl:ENSRNOG00000014171
Ltb4r GeneProduct ensembl:ENSRNOG00000020399
Tnfsf13b GeneProduct ensembl:ENSRNOG00000014464
Ptprz1 GeneProduct ensembl:ENSRNOG00000006030
Pdyn GeneProduct ensembl:ENSRNOG00000026036
Ltb GeneProduct ensembl:ENSRNOG00000000836
Plxna2 GeneProduct ensembl:ENSRNOG00000007324
Cspg4 GeneProduct ensembl:ENSRNOG00000017208
Cd47 GeneProduct ensembl:ENSRNOG00000001964
Zfp36 GeneProduct ensembl:ENSRNOG00000058388
Fcgr2a GeneProduct ensembl:ENSRNOG00000049422
Prb1 GeneProduct ensembl:ENSRNOG00000010485
Ptpra GeneProduct ensembl:ENSRNOG00000021223
Il1b GeneProduct ensembl:ENSRNOG00000004649
Zfp36 GeneProduct ensembl:ENSRNOG00000058388
Nos2 GeneProduct ensembl:ENSRNOG00000057443
Tnf GeneProduct ensembl:ENSRNOG00000000837
Nr4a1 GeneProduct ensembl:ENSRNOG00000007607
Il4 GeneProduct ensembl:ENSRNOG00000007624
Btg2 GeneProduct ensembl:ENSRNOG00000003300
Btg2 GeneProduct ensembl:ENSRNOG00000003300
Cdk2 GeneProduct ensembl:ENSRNOG00000006469
Nos1 GeneProduct ensembl:ENSRNOG00000001130
Il2 GeneProduct ensembl:ENSRNOG00000017348
Tnf GeneProduct ensembl:ENSRNOG00000000837
Il6 GeneProduct ensembl:ENSRNOG00000010278
Tlr4 GeneProduct ensembl:ENSRNOG00000010522
Fos GeneProduct ensembl:ENSRNOG00000008015
Il1b GeneProduct ensembl:ENSRNOG00000004649
Tgfb1 GeneProduct ensembl:ENSRNOG00000020652
Tlr4 GeneProduct ensembl:ENSRNOG00000010522
Tnf GeneProduct ensembl:ENSRNOG00000000837
Egr1 GeneProduct ensembl:ENSRNOG00000019422
Fos GeneProduct ensembl:ENSRNOG00000008015
Mmp12 GeneProduct ensembl:ENSRNOG00000030187
Ifng GeneProduct ensembl:ENSRNOG00000007468
Mbp GeneProduct ensembl:ENSRNOG00000016516
Rtn4 GeneProduct ensembl:ENSRNOG00000004621
C5 GeneProduct ensembl:ENSRNOG00000018899
Cxcl1 GeneProduct ensembl:ENSRNOG00000002802
Aqp4 GeneProduct ensembl:ENSRNOG00000016043
Il1b GeneProduct ensembl:ENSRNOG00000004649
Nos2 GeneProduct ensembl:ENSRNOG00000057443
Tnf GeneProduct ensembl:ENSRNOG00000000837
Arg1 GeneProduct ensembl:ENSRNOG00000013304
Epha4 GeneProduct ensembl:ENSRNOG00000013213
Efnb2 GeneProduct ensembl:ENSRNOG00000014648
Cxcl10 GeneProduct ensembl:ENSRNOG00000022256
Ccng1 GeneProduct ensembl:ENSRNOG00000003256
Mmp9 GeneProduct ensembl:ENSRNOG00000017539
Ncan GeneProduct ensembl:ENSRNOG00000048036
Slit1 GeneProduct ensembl:ENSRNOG00000026065
Slit2 GeneProduct ensembl:ENSRNOG00000003840
Slit3 GeneProduct ensembl:ENSRNOG00000007377
Ntn1 GeneProduct ensembl:ENSRNOG00000003947
Rgma GeneProduct ensembl:ENSRNOG00000012874
Mmp9 GeneProduct ensembl:ENSRNOG00000017539
Mmp9 GeneProduct ensembl:ENSRNOG00000017539
Mmp9 GeneProduct ensembl:ENSRNOG00000017539
Ccr2 GeneProduct ensembl:ENSRNOG00000006755
Il1r1 GeneProduct ensembl:ENSRNOG00000014504
Il1a GeneProduct ensembl:ENSRNOG00000004575
Cxcl1 GeneProduct ensembl:ENSRNOG00000002802
Cxcl2 GeneProduct ensembl:ENSRNOG00000002792
Ccl2 GeneProduct ensembl:ENSRNOG00000007159
Pla2g6 GeneProduct ensembl:ENSRNOG00000012295
Pla2g5 GeneProduct ensembl:ENSRNOG00000016838
Pla2g2a GeneProduct ensembl:ENSRNOG00000016945
Anxa1 GeneProduct ensembl:ENSRNOG00000017469
Icam1 GeneProduct ensembl:ENSRNOG00000020679
Selp GeneProduct ensembl:ENSRNOG00000002794
Klk8 GeneProduct ensembl:ENSRNOG00000018580
Gfap GeneProduct ensembl:ENSRNOG00000002919
Cdk4 GeneProduct ensembl:ENSRNOG00000025602
Tacr1 GeneProduct ensembl:ENSRNOG00000005853
E2f5 GeneProduct ensembl:ENSRNOG00000010760
Rb1 GeneProduct ensembl:ENSRNOG00000016029
Prkca GeneProduct ensembl:ENSRNOG00000003491
E2f1 GeneProduct ensembl:ENSRNOG00000016708
Mapk1 GeneProduct ensembl:ENSRNOG00000001849
Ccnd1 GeneProduct ensembl:ENSRNOG00000020918
Myc GeneProduct ensembl:ENSRNOG00000004500
Gadd45a GeneProduct ensembl:ENSRNOG00000005615
Mapk3 GeneProduct ensembl:ENSRNOG00000053583
Casp3 GeneProduct ensembl:ENSRNOG00000010475
Tp53 GeneProduct ensembl:ENSRNOG00000010756
Chst11 GeneProduct ensembl:ENSRNOG00000008885
Vcan GeneProduct ensembl:ENSRNOG00000029212
Col4a1 GeneProduct ensembl:ENSRNOG00000016281
Xylt1 GeneProduct ensembl:ENSRNOG00000056658
Col2a1 GeneProduct ensembl:ENSRNOG00000058560
Acan GeneProduct ensembl:ENSRNOG00000028992
Bcan GeneProduct ensembl:ENSRNOG00000018798
Sox9 GeneProduct ncbigene:140586
Tp53 GeneProduct ensembl:ENSRNOG00000010756
Grin1 GeneProduct ensembl:ENSRNOG00000011726
Vim GeneProduct ensembl:ENSRNOG00000018087
Ppp3ca GeneProduct ensembl:ENSRNOG00000009882
Gap43 GeneProduct ensembl:ENSRNOG00000001528
Fkbp1a GeneProduct ensembl:ENSRNOG00000008822
Il2 GeneProduct ensembl:ENSRNOG00000017348
Mag GeneProduct ensembl:ENSRNOG00000021023
Rtn4 GeneProduct ensembl:ENSRNOG00000004621
Rhoa GeneProduct ensembl:ENSRNOG00000050519
Rhoc GeneProduct ensembl:ENSRNOG00000012630
Rhob GeneProduct ensembl:ENSRNOG00000021403
Rock2 GeneProduct ensembl:ENSRNOG00000004496
Omg GeneProduct ensembl:ENSRNOG00000014107
Rtn4r GeneProduct ensembl:ENSRNOG00000030920
Lilrb3 GeneProduct ensembl:ENSRNOG00000054954
PTGS2 GeneProduct ncbigene:469616
Nox4 GeneProduct ensembl:ENSRNOG00000013925
Mir23b GeneProduct ncbigene:100314002
Cdk1 GeneProduct ensembl:ENSRNOG00000000632
Gdnf GeneProduct ensembl:ENSRNOG00000012819
Sema6a GeneProduct ncbigene:361324
Gja1 GeneProduct ensembl:ENSRNOG00000000805
Bdnf GeneProduct ncbigene:24225

References

  1. Role of cyclooxygenase 2 in acute spinal cord injury. Resnick DK, Graham SH, Dixon CE, Marion DW. J Neurotrauma. 1998 Dec;15(12):1005–13. PubMed Europe PMC Scholia
  2. Improved recovery after spinal cord trauma in ICAM-1 and P-selectin knockout mice. Farooque M, Isaksson J, Olsson Y. Neuroreport. 1999 Jan 18;10(1):131–4. PubMed Europe PMC Scholia
  3. Glial fibrillary acidic protein: GFAP-thirty-one years (1969-2000). Eng LF, Ghirnikar RS, Lee YL. Neurochem Res. 2000 Oct;25(9–10):1439–51. PubMed Europe PMC Scholia
  4. A neutrophil elastase inhibitor (ONO-5046) reduces neurologic damage after spinal cord injury in rats. Tonai T, Shiba K, Taketani Y, Ohmoto Y, Murata K, Muraguchi M, et al. J Neurochem. 2001 Sep;78(5):1064–72. PubMed Europe PMC Scholia
  5. Gene profiling in spinal cord injury shows role of cell cycle in neuronal death. Di Giovanni S, Knoblach SM, Brandoli C, Aden SA, Hoffman EP, Faden AI. Ann Neurol. 2003 Apr;53(4):454–68. PubMed Europe PMC Scholia
  6. Axonal plasticity and functional recovery after spinal cord injury in mice deficient in both glial fibrillary acidic protein and vimentin genes. Menet V, Prieto M, Privat A, Giménez y Ribotta M. Proc Natl Acad Sci U S A. 2003 Jul 22;100(15):8999–9004. PubMed Europe PMC Scholia
  7. Stimulation of production of glial cell line-derived neurotrophic factor and nitric oxide by lipopolysaccharide with different dose-responsiveness in cultured rat macrophages. Hashimoto M, Ito T, Fukumitsu H, Nomoto H, Furukawa Y, Furukawa S. Biomed Res. 2005 Oct;26(5):223–9. PubMed Europe PMC Scholia
  8. Decoy peptides that bind dynorphin noncovalently prevent NMDA receptor-mediated neurotoxicity. Woods AS, Kaminski R, Oz M, Wang Y, Hauser K, Goody R, et al. J Proteome Res. 2006 Apr;5(4):1017–23. PubMed Europe PMC Scholia
  9. Accumulation of the inhibitory receptor EphA4 may prevent regeneration of corticospinal tract axons following lesion. Fabes J, Anderson P, Yáñez-Muñoz RJ, Thrasher A, Brennan C, Bolsover S. Eur J Neurosci. 2006 Apr;23(7):1721–30. PubMed Europe PMC Scholia
  10. Attenuation of astrogliosis by suppressing of microglial proliferation with the cell cycle inhibitor olomoucine in rat spinal cord injury model. Tian D shi, Dong Q, Pan D ji, He Y, Yu Z yuan, Xie M jie, et al. Brain Res. 2007 Jun 18;1154:206–14. PubMed Europe PMC Scholia
  11. Neuropsin promotes oligodendrocyte death, demyelination and axonal degeneration after spinal cord injury. Terayama R, Bando Y, Murakami K, Kato K, Kishibe M, Yoshida S. Neuroscience. 2007 Aug 10;148(1):175–87. PubMed Europe PMC Scholia
  12. Caspase-3 activity is reduced after spinal cord injury in mice lacking dynorphin: differential effects on glia and neurons. Adjan VV, Hauser KF, Bakalkin G, Yakovleva T, Gharibyan A, Scheff SW, et al. Neuroscience. 2007 Sep 7;148(3):724–36. PubMed Europe PMC Scholia
  13. The p75 neurotrophin receptor is essential for neuronal cell survival and improvement of functional recovery after spinal cord injury. Chu GKT, Yu W, Fehlings MG. Neuroscience. 2007 Sep 7;148(3):668–82. PubMed Europe PMC Scholia
  14. Annexin A1 reduces inflammatory reaction and tissue damage through inhibition of phospholipase A2 activation in adult rats following spinal cord injury. Liu NK, Zhang YP, Han S, Pei J, Xu LY, Lu PH, et al. J Neuropathol Exp Neurol. 2007 Oct;66(10):932–43. PubMed Europe PMC Scholia
  15. Greatly improved neurological outcome after spinal cord compression injury in AQP4-deficient mice. Saadoun S, Bell BA, Verkman AS, Papadopoulos MC. Brain. 2008 Apr;131(Pt 4):1087–98. PubMed Europe PMC Scholia
  16. Effects of long-term FK506 administration on functional and histopathological outcome after spinal cord injury in adult rat. Saganová K, Orendácová J, Sulla I Jr, Filipcík P, Cízková D, Vanický I. Cell Mol Neurobiol. 2009 Sep;29(6–7):1045–51. PubMed Europe PMC Scholia
  17. Pathogenic antibodies are active participants in spinal cord injury. Dekaban GA, Thawer S. J Clin Invest. 2009 Oct;119(10):2881–4. PubMed Europe PMC Scholia
  18. Astrocytes initiate inflammation in the injured mouse spinal cord by promoting the entry of neutrophils and inflammatory monocytes in an IL-1 receptor/MyD88-dependent fashion. Pineau I, Sun L, Bastien D, Lacroix S. Brain Behav Immun. 2010 May;24(4):540–53. PubMed Europe PMC Scholia
  19. Eph receptor tyrosine kinases regulate astrocyte cytoskeletal rearrangement and focal adhesion formation. Puschmann TB, Turnley AM. J Neurochem. 2010 May;113(4):881–94. PubMed Europe PMC Scholia
  20. The LTB4-BLT1 axis mediates neutrophil infiltration and secondary injury in experimental spinal cord injury. Saiwai H, Ohkawa Y, Yamada H, Kumamaru H, Harada A, Okano H, et al. Am J Pathol. 2010 May;176(5):2352–66. PubMed Europe PMC Scholia
  21. CD47 knockout mice exhibit improved recovery from spinal cord injury. Myers SA, DeVries WH, Andres KR, Gruenthal MJ, Benton RL, Hoying JB, et al. Neurobiol Dis. 2011 Apr;42(1):21–34. PubMed Europe PMC Scholia
  22. Current and future therapeutic strategies for functional repair of spinal cord injury. Tohda C, Kuboyama T. Pharmacol Ther. 2011 Oct;132(1):57–71. PubMed Europe PMC Scholia
  23. Prevention of both neutrophil and monocyte recruitment promotes recovery after spinal cord injury. Lee SM, Rosen S, Weinstein P, van Rooijen N, Noble-Haeusslein LJ. J Neurotrauma. 2011 Sep;28(9):1893–907. PubMed Europe PMC Scholia
  24. Repertoire of microglial and macrophage responses after spinal cord injury. David S, Kroner A. Nat Rev Neurosci. 2011 Jun 15;12(7):388–99. PubMed Europe PMC Scholia
  25. Phospholipase A2 superfamily members play divergent roles after spinal cord injury. López-Vales R, Ghasemlou N, Redensek A, Kerr BJ, Barbayianni E, Antonopoulou G, et al. FASEB J. 2011 Dec;25(12):4240–52. PubMed Europe PMC Scholia
  26. Activated microglia inhibit axonal growth through RGMa. Kitayama M, Ueno M, Itakura T, Yamashita T. PLoS One. 2011;6(9):e25234. PubMed Europe PMC Scholia
  27. Critical role of connexin 43 in secondary expansion of traumatic spinal cord injury. Huang C, Han X, Li X, Lam E, Peng W, Lou N, et al. J Neurosci. 2012 Mar 7;32(10):3333–8. PubMed Europe PMC Scholia
  28. PlexinA2 limits recovery from corticospinal axotomy by mediating oligodendrocyte-derived Sema6A growth inhibition. Shim SO, Cafferty WBJ, Schmidt EC, Kim BG, Fujisawa H, Strittmatter SM. Mol Cell Neurosci. 2012 Jun;50(2):193–200. PubMed Europe PMC Scholia
  29. Immunosuppressant FK506: focusing on neuroprotective effects following brain and spinal cord injury. Saganová K, Gálik J, Blaško J, Korimová A, Račeková E, Vanický I. Life Sci. 2012 Aug 21;91(3–4):77–82. PubMed Europe PMC Scholia
  30. p53 Regulates the neuronal intrinsic and extrinsic responses affecting the recovery of motor function following spinal cord injury. Floriddia EM, Rathore KI, Tedeschi A, Quadrato G, Wuttke A, Lueckmann JM, et al. J Neurosci. 2012 Oct 3;32(40):13956–70. PubMed Europe PMC Scholia
  31. Molecular targeting of NOX4 for neuropathic pain after traumatic injury of the spinal cord. Im YB, Jee MK, Choi JI, Cho HT, Kwon OH, Kang SK. Cell Death Dis. 2012 Nov 15;3(11):e426. PubMed Europe PMC Scholia