Regulation of TP53 Activity through Phosphorylation (Homo sapiens)

From WikiPathways

Jump to: navigation, search
2, 8, 9, 11, 14...7440358, 3740219, 33, 80, 92, 10314, 4220, 61, 67, 862919126, 488, 37211329, 9941, 5156, 72, 102476111, 8755, 6221, 8115, 46, 58, 66, 8527, 46, 58, 93cytosolnucleoplasmNUAK13' overhanging DNA at resected DSB ends ATPTP53INP1RAD17 p-S315-TP53 TetramerAURKBp-T211-NUAK1UBB(1-76) ADPSSRP1 CDK5R1(99-307) SSRP1 p-T211-NUAK1 p-S1981,Ac-K3016-ATM ADPp-S166,S188-MDM2dimer,p-S166,S188-MDM2:MDM4TPX2 CSNK2B ATPSTK11RAD1 PRKAB2 TAF10 ATPp-S15,S20,S46-TP53 RFC3 p-T160-CDK2 p-S15,S20,S46-TP53TetramerHIPK1SUPT16H AURKB UBC(229-304) TP53RKFACT complexPLK3TAF6 TP53 UBC(305-380) ADPTP53Tetramer:STK11:p-T211-NUAK1NUAK1 DNA2 DYRK2NOC2LATPp-HIPK2:PIN1TBP TAF1 PRKAG2 NOC2L p-S15,S20,S392-TP53 p-S166,S188-MDM2 p-T288-AURKA:TPX2p-Y15,S159-CDK5:CDK5R1 (99-307)CCNA2 UBC(381-456) ATPAURKB:NOC2L:p-S15,S20,S269,T284-TP53BLM CCNA1 TAF7L CK2:FACTp-S315-TP53 p-S1981,Ac-K3016-ATMTAF7 NOC2L TAF12 UBA52(1-76) ADPRPA2 RHNO1 Casein kinase IIATPSTK11 CSNK2A2 TOPBP1 NOC2L:p-S15,S20-TP53ADPADPp-T106,S442-DYRK2PolyUb-DYRK2TP53INP1:p-HIPK2:PIN1:p-S15,S20-TP53RFC2 CSNK2A1 p-S15,S392-TP53TetramerADPPIN1 p-Y15,S159-CDK5 MDM4 TAF5 p-S15,S33,S46-TP53 p-S15-TP53 TetramerUBC(533-608) p-S15,S20-TP53 Oxidative StressInduced Senescencep-S37-TP53 Tetrameradenosine 5'-monophosphate TP53 CCNA:p-T160-CDK2Regulation of TP53Expression andDegradationRPA1 ATPp-S15,S20-TP53 ATR:ATRIP:RPA:3'overhangingssDNA-DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:BRCA1-C complex:EXO1,DNA2:BLM,WRN:p-S990,Ac-K1249-BRIP1:RAD17:RFC:RAD9:HUS1:RAD1:RHNO1:TOPBP1p-S317,S345-CHEK1p-S15,S20-TP53TetramerTAF2 HUS1 TAF11 TAF15 p-S15,S20-TP53 p-T180,Y182-MAPK14 ATPTAF9B p-T182-MAPKAPK5 TAF4B p-T55-TP53 p-HIPK2 EXO1 p-T180,Y182-MAPK11 p-T183-PRKAA1 TAF3 p-S327,T847,T859-RBBP8 RFC4 TOP3A p-T172-PRKAA2 TAF1L NOC2L AURKB:NOC2L:p-S15,S20-TP53RFC5 TP53INP1 p-S37-TP53 p-HIPK2 p-T714,T734-BARD1 ADPp-S15,S20,S269,T284-TP53 p-S343-NBN ATRIP PRKAG1 p-S15,S20,S392-TP53Tetramerp-S988,S1387,S1423,S1524,S1547-BRCA1 UBC(609-684) p-S15-TP53 TAF9 UBC(457-532) MRE11A KAT5 Activated AMPKheterotrimerRAD50 TP53 STK11 PRKAG3 WRN HIPK1 PIN1 UBC(77-152) ADPphospho-p38MAPK:p-T-182-MAPKAPK5ADPUBC(1-76) ADPATPCSNK2B p-S,3T-CHEK2TP53Tetramer:STK11:NUAK1UBB(77-152) PRKAB1 TAF4 UbTP53 ADPp-S990,Ac-K1249-BRIP1 p-T55-TP53 TetramerRPS27A(1-76) AURKB SUPT16H p-S15,S33,S46-TP53TetramerATPTAF13 UBB(153-228) RPA3 ATR p-S15,S392-TP53 ATPRMI2 UBC(153-228) p-T288-AURKA p-S15,S20-TP53 ATPCSNK2A2 RAD9B TP53 TetramerTP53 Tetramer:HIPK1RAD9A TFIIDRMI1 CSNK2A1 467123, 5, 10, 13, 17...9115, 854, 7, 16, 18, 31...3880211, 6, 12, 19, 60...21, 813541, 51299170, 89, 98


Description

Phosphorylation of TP53 (p53) at the N-terminal serine residues S15 and S20 plays a critical role in protein stabilization as phosphorylation at these sites interferes with binding of the ubiquitin ligase MDM2 to TP53. Several different kinases can phosphorylate TP53 at S15 and S20. In response to double strand DNA breaks, S15 is phosphorylated by ATM (Banin et al. 1998, Canman et al. 1998, Khanna et al. 1998), and S20 by CHEK2 (Chehab et al. 1999, Chehab et al. 2000, Hirao et al. 2000). DNA damage or other types of genotoxic stress, such as stalled replication forks, can trigger ATR-mediated phosphorylation of TP53 at S15 (Lakin et al. 1999, Tibbetts et al. 1999) and CHEK1-mediated phosphorylation of TP53 at S20 (Shieh et al. 2000). In response to various types of cell stress, NUAK1 (Hou et al. 2011), CDK5 (Zhang et al. 2002, Lee et al. 2007, Lee et al. 2008), AMPK (Jones et al. 2005) and TP53RK (Abe et al. 2001, Facchin et al. 2003) can phosphorylate TP53 at S15, while PLK3 (Xie, Wang et al. 2001, Xie, Wu et al. 2001) can phosphorylate TP53 at S20.

Phosphorylation of TP53 at serine residue S46 promotes transcription of TP53-regulated apoptotic genes rather than cell cycle arrest genes. Several kinases can phosphorylate S46 of TP53, including ATM-activated DYRK2, which, like TP53, is targeted for degradation by MDM2 (Taira et al. 2007, Taira et al. 2010). TP53 is also phosphorylated at S46 by HIPK2 in the presence of the TP53 transcriptional target TP53INP1 (D'Orazi et al. 2002, Hofmann et al. 2002, Tomasini et al. 2003). CDK5, in addition to phosphorylating TP53 at S15, also phosphorylates it at S33 and S46, which promotes neuronal cell death (Lee et al. 2007).<p>MAPKAPK5 (PRAK) phosphorylates TP53 at serine residue S37, promoting cell cycle arrest and cellular senescence in response to oncogenic RAS signaling (Sun et al. 2007).<p>NUAK1 phosphorylates TP53 at S15 and S392, and phosphorylation at S392 may contribute to TP53-mediated transcriptional activation of cell cycle arrest genes (Hou et al. 2011). S392 of TP53 is also phosphorylated by the complex of casein kinase II (CK2) bound to the FACT complex, enhancing transcriptional activity of TP53 in response to UV irradiation (Keller et al. 2001, Keller and Lu 2002).<p>The activity of TP53 is inhibited by phosphorylation at serine residue S315, which enhances MDM2 binding and degradation of TP53. S315 of TP53 is phosphorylated by Aurora kinase A (AURKA) (Katayama et al. 2004) and CDK2 (Luciani et al. 2000). Interaction with MDM2 and the consequent TP53 degradation is also increased by phosphorylation of TP53 threonine residue T55 by the transcription initiation factor complex TFIID (Li et al. 2004).<p>Aurora kinase B (AURKB) has been shown to phosphorylate TP53 at serine residue S269 and threonine residue T284, which is possibly facilitated by the binding of the NIR co-repressor. AURKB-mediated phosphorylation was reported to inhibit TP53 transcriptional activity through an unknown mechanism (Wu et al. 2011). A putative direct interaction between TP53 and AURKB has also been described and linked to TP53 phosphorylation and S183, T211 and S215 and TP53 degradation (Gully et al. 2012). View original pathway at:Reactome.</div>

Comments

Reactome-Converter 
Pathway is converted from Reactome ID: 6804756
Reactome-version 
Reactome version: 66
Reactome Author 
Reactome Author: Orlic-Milacic, Marija

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Gangloff YG, Pointud JC, Thuault S, Carré L, Romier C, Muratoglu S, Brand M, Tora L, Couderc JL, Davidson I.; ''The TFIID components human TAF(II)140 and Drosophila BIP2 (TAF(II)155) are novel metazoan homologues of yeast TAF(II)47 containing a histone fold and a PHD finger.''; PubMed
  2. Li HH, Li AG, Sheppard HM, Liu X.; ''Phosphorylation on Thr-55 by TAF1 mediates degradation of p53: a role for TAF1 in cell G1 progression.''; PubMed
  3. McLaughlin MM, Kumar S, McDonnell PC, Van Horn S, Lee JC, Livi GP, Young PR.; ''Identification of mitogen-activated protein (MAP) kinase-activated protein kinase-3, a novel substrate of CSBP p38 MAP kinase.''; PubMed
  4. Toledo F, Wahl GM.; ''MDM2 and MDM4: p53 regulators as targets in anticancer therapy.''; PubMed
  5. Serrano M, Hannon GJ, Beach D.; ''A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4.''; PubMed
  6. Bertolotti A, Melot T, Acker J, Vigneron M, Delattre O, Tora L.; ''EWS, but not EWS-FLI-1, is associated with both TFIID and RNA polymerase II: interactions between two members of the TET family, EWS and hTAFII68, and subunits of TFIID and RNA polymerase II complexes.''; PubMed
  7. Dornan D, Wertz I, Shimizu H, Arnott D, Frantz GD, Dowd P, O'Rourke K, Koeppen H, Dixit VM.; ''The ubiquitin ligase COP1 is a critical negative regulator of p53.''; PubMed
  8. Keller DM, Lu H.; ''p53 serine 392 phosphorylation increases after UV through induction of the assembly of the CK2.hSPT16.SSRP1 complex.''; PubMed
  9. Lee JH, Jeong MW, Kim W, Choi YH, Kim KT.; ''Cooperative roles of c-Abl and Cdk5 in regulation of p53 in response to oxidative stress.''; PubMed
  10. Nicke B, Bastien J, Khanna SJ, Warne PH, Cowling V, Cook SJ, Peters G, Delpuech O, Schulze A, Berns K, Mullenders J, Beijersbergen RL, Bernards R, Ganesan TS, Downward J, Hancock DC.; ''Involvement of MINK, a Ste20 family kinase, in Ras oncogene-induced growth arrest in human ovarian surface epithelial cells.''; PubMed
  11. Xie S, Wang Q, Wu H, Cogswell J, Lu L, Jhanwar-Uniyal M, Dai W.; ''Reactive oxygen species-induced phosphorylation of p53 on serine 20 is mediated in part by polo-like kinase-3.''; PubMed
  12. Frontini M, Soutoglou E, Argentini M, Bole-Feysot C, Jost B, Scheer E, Tora L.; ''TAF9b (formerly TAF9L) is a bona fide TAF that has unique and overlapping roles with TAF9.''; PubMed
  13. Sun P, Yoshizuka N, New L, Moser BA, Li Y, Liao R, Xie C, Chen J, Deng Q, Yamout M, Dong MQ, Frangou CG, Yates JR, Wright PE, Han J.; ''PRAK is essential for ras-induced senescence and tumor suppression.''; PubMed
  14. Lakin ND, Hann BC, Jackson SP.; ''The ataxia-telangiectasia related protein ATR mediates DNA-dependent phosphorylation of p53.''; PubMed
  15. Bitomsky N, Conrad E, Moritz C, Polonio-Vallon T, Sombroek D, Schultheiss K, Glas C, Greiner V, Herbel C, Mantovani F, del Sal G, Peri F, Hofmann TG.; ''Autophosphorylation and Pin1 binding coordinate DNA damage-induced HIPK2 activation and cell death.''; PubMed
  16. Leng RP, Lin Y, Ma W, Wu H, Lemmers B, Chung S, Parant JM, Lozano G, Hakem R, Benchimol S.; ''Pirh2, a p53-induced ubiquitin-protein ligase, promotes p53 degradation.''; PubMed
  17. Barradas M, Anderton E, Acosta JC, Li S, Banito A, Rodriguez-Niedenführ M, Maertens G, Banck M, Zhou MM, Walsh MJ, Peters G, Gil J.; ''Histone demethylase JMJD3 contributes to epigenetic control of INK4a/ARF by oncogenic RAS.''; PubMed
  18. Parisi T, Pollice A, Di Cristofano A, Calabrò V, La Mantia G.; ''Transcriptional regulation of the human tumor suppressor p14(ARF) by E2F1, E2F2, E2F3, and Sp1-like factors.''; PubMed
  19. Hoffmann A, Roeder RG.; ''Cloning and characterization of human TAF20/15. Multiple interactions suggest a central role in TFIID complex formation.''; PubMed
  20. Chehab NH, Malikzay A, Appel M, Halazonetis TD.; ''Chk2/hCds1 functions as a DNA damage checkpoint in G(1) by stabilizing p53.''; PubMed
  21. Hou X, Liu JE, Liu W, Liu CY, Liu ZY, Sun ZY.; ''A new role of NUAK1: directly phosphorylating p53 and regulating cell proliferation.''; PubMed
  22. Dietrich N, Bracken AP, Trinh E, Schjerling CK, Koseki H, Rappsilber J, Helin K, Hansen KH.; ''Bypass of senescence by the polycomb group protein CBX8 through direct binding to the INK4A-ARF locus.''; PubMed
  23. White A, Pargellis CA, Studts JM, Werneburg BG, Farmer BT.; ''Molecular basis of MAPK-activated protein kinase 2:p38 assembly.''; PubMed
  24. Meng W, Swenson LL, Fitzgibbon MJ, Hayakawa K, Ter Haar E, Behrens AE, Fulghum JR, Lippke JA.; ''Structure of mitogen-activated protein kinase-activated protein (MAPKAP) kinase 2 suggests a bifunctional switch that couples kinase activation with nuclear export.''; PubMed
  25. Takekawa M, Tatebayashi K, Saito H.; ''Conserved docking site is essential for activation of mammalian MAP kinase kinases by specific MAP kinase kinase kinases.''; PubMed
  26. Facchin S, Lopreiato R, Ruzzene M, Marin O, Sartori G, Götz C, Montenarh M, Carignani G, Pinna LA.; ''Functional homology between yeast piD261/Bud32 and human PRPK: both phosphorylate p53 and PRPK partially complements piD261/Bud32 deficiency.''; PubMed
  27. D'Orazi G, Cecchinelli B, Bruno T, Manni I, Higashimoto Y, Saito S, Gostissa M, Coen S, Marchetti A, Del Sal G, Piaggio G, Fanciulli M, Appella E, Soddu S.; ''Homeodomain-interacting protein kinase-2 phosphorylates p53 at Ser 46 and mediates apoptosis.''; PubMed
  28. Murphy LO, Smith S, Chen RH, Fingar DC, Blenis J.; ''Molecular interpretation of ERK signal duration by immediate early gene products.''; PubMed
  29. Pascreau G, Eckerdt F, Lewellyn AL, Prigent C, Maller JL.; ''Phosphorylation of p53 is regulated by TPX2-Aurora A in xenopus oocytes.''; PubMed
  30. Matsuura H, Nishitoh H, Takeda K, Matsuzawa A, Amagasa T, Ito M, Yoshioka K, Ichijo H.; ''Phosphorylation-dependent scaffolding role of JSAP1/JIP3 in the ASK1-JNK signaling pathway. A new mode of regulation of the MAP kinase cascade.''; PubMed
  31. Zhang Y, Xiong Y, Yarbrough WG.; ''ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways.''; PubMed
  32. Weinmann AS, Bartley SM, Zhang T, Zhang MQ, Farnham PJ.; ''Use of chromatin immunoprecipitation to clone novel E2F target promoters.''; PubMed
  33. Patrick GN, Zukerberg L, Nikolic M, de la Monte S, Dikkes P, Tsai LH.; ''Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration.''; PubMed
  34. Agger K, Cloos PA, Rudkjaer L, Williams K, Andersen G, Christensen J, Helin K.; ''The H3K27me3 demethylase JMJD3 contributes to the activation of the INK4A-ARF locus in response to oncogene- and stress-induced senescence.''; PubMed
  35. Hublitz P, Kunowska N, Mayer UP, Müller JM, Heyne K, Yin N, Fritzsche C, Poli C, Miguet L, Schupp IW, van Grunsven LA, Potiers N, van Dorsselaer A, Metzger E, Roemer K, Schüle R.; ''NIR is a novel INHAT repressor that modulates the transcriptional activity of p53.''; PubMed
  36. Fleming Y, Armstrong CG, Morrice N, Paterson A, Goedert M, Cohen P.; ''Synergistic activation of stress-activated protein kinase 1/c-Jun N-terminal kinase (SAPK1/JNK) isoforms by mitogen-activated protein kinase kinase 4 (MKK4) and MKK7.''; PubMed
  37. Keller DM, Zeng X, Wang Y, Zhang QH, Kapoor M, Shu H, Goodman R, Lozano G, Zhao Y, Lu H.; ''A DNA damage-induced p53 serine 392 kinase complex contains CK2, hSpt16, and SSRP1.''; PubMed
  38. Cotta-Ramusino C, McDonald ER, Hurov K, Sowa ME, Harper JW, Elledge SJ.; ''A DNA damage response screen identifies RHINO, a 9-1-1 and TopBP1 interacting protein required for ATR signaling.''; PubMed
  39. Ichijo H, Nishida E, Irie K, ten Dijke P, Saitoh M, Moriguchi T, Takagi M, Matsumoto K, Miyazono K, Gotoh Y.; ''Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways.''; PubMed
  40. Taira N, Yamamoto H, Yamaguchi T, Miki Y, Yoshida K.; ''ATM augments nuclear stabilization of DYRK2 by inhibiting MDM2 in the apoptotic response to DNA damage.''; PubMed
  41. Rey C, Soubeyran I, Mahouche I, Pedeboscq S, Bessede A, Ichas F, De Giorgi F, Lartigue L.; ''HIPK1 drives p53 activation to limit colorectal cancer cell growth.''; PubMed
  42. Tibbetts RS, Brumbaugh KM, Williams JM, Sarkaria JN, Cliby WA, Shieh SY, Taya Y, Prives C, Abraham RT.; ''A role for ATR in the DNA damage-induced phosphorylation of p53.''; PubMed
  43. Clifton AD, Young PR, Cohen P.; ''A comparison of the substrate specificity of MAPKAP kinase-2 and MAPKAP kinase-3 and their activation by cytokines and cellular stress.''; PubMed
  44. Sithanandam G, Latif F, Duh FM, Bernal R, Smola U, Li H, Kuzmin I, Wixler V, Geil L, Shrestha S.; ''3pK, a new mitogen-activated protein kinase-activated protein kinase located in the small cell lung cancer tumor suppressor gene region.''; PubMed
  45. Jeffrey PD, Gorina S, Pavletich NP.; ''Crystal structure of the tetramerization domain of the p53 tumor suppressor at 1.7 angstroms.''; PubMed
  46. Tomasini R, Samir AA, Carrier A, Isnardon D, Cecchinelli B, Soddu S, Malissen B, Dagorn JC, Iovanna JL, Dusetti NJ.; ''TP53INP1s and homeodomain-interacting protein kinase-2 (HIPK2) are partners in regulating p53 activity.''; PubMed
  47. Taira N, Nihira K, Yamaguchi T, Miki Y, Yoshida K.; ''DYRK2 is targeted to the nucleus and controls p53 via Ser46 phosphorylation in the apoptotic response to DNA damage.''; PubMed
  48. Abe Y, Matsumoto S, Wei S, Nezu K, Miyoshi A, Kito K, Ueda N, Shigemoto K, Hitsumoto Y, Nikawa J, Enomoto Y.; ''Cloning and characterization of a p53-related protein kinase expressed in interleukin-2-activated cytotoxic T-cells, epithelial tumor cell lines, and the testes.''; PubMed
  49. Ainbinder E, Bergelson S, Pinkus R, Daniel V.; ''Regulatory mechanisms involved in activator-protein-1 (AP-1)-mediated activation of glutathione-S-transferase gene expression by chemical agents.''; PubMed
  50. Gully CP, Velazquez-Torres G, Shin JH, Fuentes-Mattei E, Wang E, Carlock C, Chen J, Rothenberg D, Adams HP, Choi HH, Guma S, Phan L, Chou PC, Su CH, Zhang F, Chen JS, Yang TY, Yeung SC, Lee MH.; ''Aurora B kinase phosphorylates and instigates degradation of p53.''; PubMed
  51. Kondo S, Lu Y, Debbas M, Lin AW, Sarosi I, Itie A, Wakeham A, Tuan J, Saris C, Elliott G, Ma W, Benchimol S, Lowe SW, Mak TW, Thukral SK.; ''Characterization of cells and gene-targeted mice deficient for the p53-binding kinase homeodomain-interacting protein kinase 1 (HIPK1).''; PubMed
  52. Bracken AP, Kleine-Kohlbrecher D, Dietrich N, Pasini D, Gargiulo G, Beekman C, Theilgaard-Mönch K, Minucci S, Porse BT, Marine JC, Hansen KH, Helin K.; ''The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells.''; PubMed
  53. Wade M, Li YC, Wahl GM.; ''MDM2, MDMX and p53 in oncogenesis and cancer therapy.''; PubMed
  54. Saitoh M, Nishitoh H, Fujii M, Takeda K, Tobiume K, Sawada Y, Kawabata M, Miyazono K, Ichijo H.; ''Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1.''; PubMed
  55. Adamovich Y, Adler J, Meltser V, Reuven N, Shaul Y.; ''AMPK couples p73 with p53 in cell fate decision.''; PubMed
  56. Khanna KK, Keating KE, Kozlov S, Scott S, Gatei M, Hobson K, Taya Y, Gabrielli B, Chan D, Lees-Miller SP, Lavin MF.; ''ATM associates with and phosphorylates p53: mapping the region of interaction.''; PubMed
  57. New L, Jiang Y, Zhao M, Liu K, Zhu W, Flood LJ, Kato Y, Parry GC, Han J.; ''PRAK, a novel protein kinase regulated by the p38 MAP kinase.''; PubMed
  58. Okamura S, Arakawa H, Tanaka T, Nakanishi H, Ng CC, Taya Y, Monden M, Nakamura Y.; ''p53DINP1, a p53-inducible gene, regulates p53-dependent apoptosis.''; PubMed
  59. Deacon K, Blank JL.; ''Characterization of the mitogen-activated protein kinase kinase 4 (MKK4)/c-Jun NH2-terminal kinase 1 and MKK3/p38 pathways regulated by MEK kinases 2 and 3. MEK kinase 3 activates MKK3 but does not cause activation of p38 kinase in vivo.''; PubMed
  60. Mousson F, Kolkman A, Pijnappel WW, Timmers HT, Heck AJ.; ''Quantitative proteomics reveals regulation of dynamic components within TATA-binding protein (TBP) transcription complexes.''; PubMed
  61. Shieh SY, Ahn J, Tamai K, Taya Y, Prives C.; ''The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites.''; PubMed
  62. Jones RG, Plas DR, Kubek S, Buzzai M, Mu J, Xu Y, Birnbaum MJ, Thompson CB.; ''AMP-activated protein kinase induces a p53-dependent metabolic checkpoint.''; PubMed
  63. Glover JN, Harrison SC.; ''Crystal structure of the heterodimeric bZIP transcription factor c-Fos-c-Jun bound to DNA.''; PubMed
  64. Takagi M, Absalon MJ, McLure KG, Kastan MB.; ''Regulation of p53 translation and induction after DNA damage by ribosomal protein L26 and nucleolin.''; PubMed
  65. Yang W, Rozan LM, McDonald ER, Navaraj A, Liu JJ, Matthew EM, Wang W, Dicker DT, El-Deiry WS.; ''CARPs are ubiquitin ligases that promote MDM2-independent p53 and phospho-p53ser20 degradation.''; PubMed
  66. Siepi F, Gatti V, Camerini S, Crescenzi M, Soddu S.; ''HIPK2 catalytic activity and subcellular localization are regulated by activation-loop Y354 autophosphorylation.''; PubMed
  67. Hirao A, Kong YY, Matsuoka S, Wakeham A, Ruland J, Yoshida H, Liu D, Elledge SJ, Mak TW.; ''DNA damage-induced activation of p53 by the checkpoint kinase Chk2.''; PubMed
  68. Gao Z, Zhang J, Bonasio R, Strino F, Sawai A, Parisi F, Kluger Y, Reinberg D.; ''PCGF homologs, CBX proteins, and RYBP define functionally distinct PRC1 family complexes.''; PubMed
  69. Agherbi H, Gaussmann-Wenger A, Verthuy C, Chasson L, Serrano M, Djabali M.; ''Polycomb mediated epigenetic silencing and replication timing at the INK4a/ARF locus during senescence.''; PubMed
  70. Pant V, Xiong S, Iwakuma T, Quintás-Cardama A, Lozano G.; ''Heterodimerization of Mdm2 and Mdm4 is critical for regulating p53 activity during embryogenesis but dispensable for p53 and Mdm2 stability.''; PubMed
  71. Hupp TR, Lane DP.; ''Allosteric activation of latent p53 tetramers.''; PubMed
  72. Banin S, Moyal L, Shieh S, Taya Y, Anderson CW, Chessa L, Smorodinsky NI, Prives C, Reiss Y, Shiloh Y, Ziv Y.; ''Enhanced phosphorylation of p53 by ATM in response to DNA damage.''; PubMed
  73. Ben-Levy R, Leighton IA, Doza YN, Attwood P, Morrice N, Marshall CJ, Cohen P.; ''Identification of novel phosphorylation sites required for activation of MAPKAP kinase-2.''; PubMed
  74. Luciani MG, Hutchins JR, Zheleva D, Hupp TR.; ''The C-terminal regulatory domain of p53 contains a functional docking site for cyclin A.''; PubMed
  75. Wu X, Bayle JH, Olson D, Levine AJ.; ''The p53-mdm-2 autoregulatory feedback loop.''; PubMed
  76. Moiseeva O, Bourdeau V, Roux A, Deschênes-Simard X, Ferbeyre G.; ''Mitochondrial dysfunction contributes to oncogene-induced senescence.''; PubMed
  77. Kuzmichev A, Nishioka K, Erdjument-Bromage H, Tempst P, Reinberg D.; ''Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein.''; PubMed
  78. Moiseeva O, Mallette FA, Mukhopadhyay UK, Moores A, Ferbeyre G.; ''DNA damage signaling and p53-dependent senescence after prolonged beta-interferon stimulation.''; PubMed
  79. Le MT, Teh C, Shyh-Chang N, Xie H, Zhou B, Korzh V, Lodish HF, Lim B.; ''MicroRNA-125b is a novel negative regulator of p53.''; PubMed
  80. Lee JH, Kim HS, Lee SJ, Kim KT.; ''Stabilization and activation of p53 induced by Cdk5 contributes to neuronal cell death.''; PubMed
  81. Zeng PY, Berger SL.; ''LKB1 is recruited to the p21/WAF1 promoter by p53 to mediate transcriptional activation.''; PubMed
  82. Lin TY, Cheng YC, Yang HC, Lin WC, Wang CC, Lai PL, Shieh SY.; ''Loss of the candidate tumor suppressor BTG3 triggers acute cellular senescence via the ERK-JMJD3-p16(INK4a) signaling axis.''; PubMed
  83. Martinez E, Ge H, Tao Y, Yuan CX, Palhan V, Roeder RG.; ''Novel cofactors and TFIIA mediate functional core promoter selectivity by the human TAFII150-containing TFIID complex.''; PubMed
  84. Saldaña-Meyer R, Recillas-Targa F.; ''Transcriptional and epigenetic regulation of the p53 tumor suppressor gene.''; PubMed
  85. Saul VV, de la Vega L, Milanovic M, Krüger M, Braun T, Fritz-Wolf K, Becker K, Schmitz ML.; ''HIPK2 kinase activity depends on cis-autophosphorylation of its activation loop.''; PubMed
  86. Chehab NH, Malikzay A, Stavridi ES, Halazonetis TD.; ''Phosphorylation of Ser-20 mediates stabilization of human p53 in response to DNA damage.''; PubMed
  87. Xie S, Wu H, Wang Q, Cogswell JP, Husain I, Conn C, Stambrook P, Jhanwar-Uniyal M, Dai W.; ''Plk3 functionally links DNA damage to cell cycle arrest and apoptosis at least in part via the p53 pathway.''; PubMed
  88. Mahmoudi S, Henriksson S, Corcoran M, Méndez-Vidal C, Wiman KG, Farnebo M.; ''Wrap53, a natural p53 antisense transcript required for p53 induction upon DNA damage.''; PubMed
  89. Huang L, Yan Z, Liao X, Li Y, Yang J, Wang ZG, Zuo Y, Kawai H, Shadfan M, Ganapathy S, Yuan ZM.; ''The p53 inhibitors MDM2/MDMX complex is required for control of p53 activity in vivo.''; PubMed
  90. Okazaki K, Sagata N.; ''The Mos/MAP kinase pathway stabilizes c-Fos by phosphorylation and augments its transforming activity in NIH 3T3 cells.''; PubMed
  91. Wu L, Ma CA, Zhao Y, Jain A.; ''Aurora B interacts with NIR-p53, leading to p53 phosphorylation in its DNA-binding domain and subsequent functional suppression.''; PubMed
  92. Zhang J, Krishnamurthy PK, Johnson GV.; ''Cdk5 phosphorylates p53 and regulates its activity.''; PubMed
  93. Hofmann TG, Möller A, Sirma H, Zentgraf H, Taya Y, Dröge W, Will H, Schmitz ML.; ''Regulation of p53 activity by its interaction with homeodomain-interacting protein kinase-2.''; PubMed
  94. Raingeaud J, Whitmarsh AJ, Barrett T, Dérijard B, Davis RJ.; ''MKK3- and MKK6-regulated gene expression is mediated by the p38 mitogen-activated protein kinase signal transduction pathway.''; PubMed
  95. New L, Jiang Y, Han J.; ''Regulation of PRAK subcellular location by p38 MAP kinases.''; PubMed
  96. Kotake Y, Cao R, Viatour P, Sage J, Zhang Y, Xiong Y.; ''pRB family proteins are required for H3K27 trimethylation and Polycomb repression complexes binding to and silencing p16INK4alpha tumor suppressor gene.''; PubMed
  97. Voncken JW, Niessen H, Neufeld B, Rennefahrt U, Dahlmans V, Kubben N, Holzer B, Ludwig S, Rapp UR.; ''MAPKAP kinase 3pK phosphorylates and regulates chromatin association of the polycomb group protein Bmi1.''; PubMed
  98. Cheng Q, Cross B, Li B, Chen L, Li Z, Chen J.; ''Regulation of MDM2 E3 ligase activity by phosphorylation after DNA damage.''; PubMed
  99. Katayama H, Sasai K, Kawai H, Yuan ZM, Bondaruk J, Suzuki F, Fujii S, Arlinghaus RB, Czerniak BA, Sen S.; ''Phosphorylation by aurora kinase A induces Mdm2-mediated destabilization and inhibition of p53.''; PubMed
  100. Lukas SM, Kroe RR, Wildeson J, Peet GW, Frego L, Davidson W, Ingraham RH, Pargellis CA, Labadia ME, Werneburg BG.; ''Catalysis and function of the p38 alpha.MK2a signaling complex.''; PubMed
  101. Li M, Chen D, Shiloh A, Luo J, Nikolaev AY, Qin J, Gu W.; ''Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization.''; PubMed
  102. Canman CE, Lim DS, Cimprich KA, Taya Y, Tamai K, Sakaguchi K, Appella E, Kastan MB, Siliciano JD.; ''Activation of the ATM kinase by ionizing radiation and phosphorylation of p53.''; PubMed
  103. Sharma P, Sharma M, Amin ND, Albers RW, Pant HC.; ''Regulation of cyclin-dependent kinase 5 catalytic activity by phosphorylation.''; PubMed
  104. Mizukami Y, Yoshioka K, Morimoto S, Yoshida K.; ''A novel mechanism of JNK1 activation. Nuclear translocation and activation of JNK1 during ischemia and reperfusion.''; PubMed
  105. Bracken AP, Pasini D, Capra M, Prosperini E, Colli E, Helin K.; ''EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer.''; PubMed

History

View all...
CompareRevisionActionTimeUserComment
101393view11:28, 1 November 2018ReactomeTeamreactome version 66
100931view21:04, 31 October 2018ReactomeTeamreactome version 65
100469view19:38, 31 October 2018ReactomeTeamreactome version 64
100015view16:21, 31 October 2018ReactomeTeamreactome version 63
99568view14:54, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
94038view13:53, 16 August 2017ReactomeTeamreactome version 61
93661view11:30, 9 August 2017ReactomeTeamreactome version 61
88149view13:02, 26 July 2016RyanmillerOntology Term : 'transcription pathway' added !
88148view13:02, 26 July 2016RyanmillerOntology Term : 'regulatory pathway' added !
86780view09:26, 11 July 2016ReactomeTeamNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
3' overhanging DNA at resected DSB ends R-ALL-75156 (Reactome)
ADPMetaboliteCHEBI:16761 (ChEBI)
ATPMetaboliteCHEBI:15422 (ChEBI)
ATR ProteinQ13535 (Uniprot-TrEMBL)
ATR:ATRIP:RPA:3'

overhanging

ssDNA-DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:BRCA1-C complex:EXO1,DNA2:BLM,WRN:p-S990,Ac-K1249-BRIP1:RAD17:RFC:RAD9:HUS1:RAD1:RHNO1:TOPBP1
ComplexR-HSA-5685039 (Reactome)
ATRIP ProteinQ8WXE1 (Uniprot-TrEMBL)
AURKB ProteinQ96GD4 (Uniprot-TrEMBL)
AURKB:NOC2L:p-S15,S20,S269,T284-TP53ComplexR-HSA-6805128 (Reactome)
AURKB:NOC2L:p-S15,S20-TP53ComplexR-HSA-6805123 (Reactome)
AURKBProteinQ96GD4 (Uniprot-TrEMBL)
Activated AMPK heterotrimerComplexR-HSA-6805467 (Reactome)
BLM ProteinP54132 (Uniprot-TrEMBL)
CCNA1 ProteinP78396 (Uniprot-TrEMBL)
CCNA2 ProteinP20248 (Uniprot-TrEMBL)
CCNA:p-T160-CDK2ComplexR-HSA-187952 (Reactome)
CDK5R1(99-307) ProteinQ15078 (Uniprot-TrEMBL)
CK2:FACTComplexR-HSA-6805062 (Reactome)
CSNK2A1 ProteinP68400 (Uniprot-TrEMBL)
CSNK2A2 ProteinP19784 (Uniprot-TrEMBL)
CSNK2B ProteinP67870 (Uniprot-TrEMBL)
Casein kinase IIComplexR-HSA-6805066 (Reactome)
DNA2 ProteinP51530 (Uniprot-TrEMBL)
DYRK2ProteinQ92630 (Uniprot-TrEMBL)
EXO1 ProteinQ9UQ84 (Uniprot-TrEMBL)
FACT complexComplexR-HSA-112417 (Reactome)
HIPK1 ProteinQ86Z02 (Uniprot-TrEMBL)
HIPK1ProteinQ86Z02 (Uniprot-TrEMBL)
HUS1 ProteinO60921 (Uniprot-TrEMBL)
KAT5 ProteinQ92993 (Uniprot-TrEMBL)
MDM4 ProteinO15151 (Uniprot-TrEMBL)
MRE11A ProteinP49959 (Uniprot-TrEMBL)
NOC2L ProteinQ9Y3T9 (Uniprot-TrEMBL)
NOC2L:p-S15,S20-TP53ComplexR-HSA-3222134 (Reactome)
NOC2LProteinQ9Y3T9 (Uniprot-TrEMBL)
NUAK1 ProteinO60285 (Uniprot-TrEMBL)
NUAK1ProteinO60285 (Uniprot-TrEMBL)
Oxidative Stress Induced SenescencePathwayR-HSA-2559580 (Reactome) Oxidative stress, caused by increased concentration of reactive oxygen species (ROS) in the cell, can happen as a consequence of mitochondrial dysfunction induced by the oncogenic RAS (Moiseeva et al. 2009) or independent of oncogenic signaling. Prolonged exposure to interferon-beta (IFNB, IFN-beta) also results in ROS increase (Moiseeva et al. 2006). ROS oxidize thioredoxin (TXN), which causes TXN to dissociate from the N-terminus of MAP3K5 (ASK1), enabling MAP3K5 to become catalytically active (Saitoh et al. 1998). ROS also stimulate expression of Ste20 family kinases MINK1 (MINK) and TNIK through an unknown mechanism, and MINK1 and TNIK positively regulate MAP3K5 activation (Nicke et al. 2005).


MAP3K5 phosphorylates and activates MAP2K3 (MKK3) and MAP2K6 (MKK6) (Ichijo et al. 1997, Takekawa et al. 2005), which act as p38 MAPK kinases, as well as MAP2K4 (SEK1) (Ichijo et al. 1997, Matsuura et al. 2002), which, together with MAP2K7 (MKK7), acts as a JNK kinase.


MKK3 and MKK6 phosphorylate and activate p38 MAPK alpha (MAPK14) and beta (MAPK11) (Raingeaud et al. 1996), enabling p38 MAPKs to phosphorylate and activate MAPKAPK2 (MK2) and MAPKAPK3 (MK3) (Ben-Levy et al. 1995, Clifton et al. 1996, McLaughlin et al. 1996, Sithanandam et al. 1996, Meng et al. 2002, Lukas et al. 2004, White et al. 2007), as well as MAPKAPK5 (PRAK) (New et al. 1998 and 2003, Sun et al. 2007).


Phosphorylation of JNKs (MAPK8, MAPK9 and MAPK10) by MAP3K5-activated MAP2K4 (Deacon and Blank 1997, Fleming et al. 2000) allows JNKs to migrate to the nucleus (Mizukami et al. 1997) where they phosphorylate JUN. Phosphorylated JUN binds FOS phosphorylated by ERK1 or ERK2, downstream of activated RAS (Okazaki and Sagata 1995, Murphy et al. 2002), forming the activated protein 1 (AP-1) complex (FOS:JUN heterodimer) (Glover and Harrison 1995, Ainbinder et al. 1997).


Activation of p38 MAPKs and JNKs downstream of MAP3K5 (ASK1) ultimately converges on transcriptional regulation of CDKN2A locus. In dividing cells, nucleosomes bound to the CDKN2A locus are trimethylated on lysine residue 28 of histone H3 (HIST1H3A) by the Polycomb repressor complex 2 (PRC2), creating the H3K27Me3 (Me3K-28-HIST1H3A) mark (Bracken et al. 2007, Kotake et al. 2007). The expression of Polycomb constituents of PRC2 (Kuzmichev et al. 2002) - EZH2, EED and SUZ12 - and thereby formation of the PRC2, is positively regulated in growing cells by E2F1, E2F2 and E2F3 (Weinmann et al. 2001, Bracken et al. 2003). H3K27Me3 mark serves as a docking site for the Polycomb repressor complex 1 (PRC1) that contains BMI1 (PCGF4) and is therefore named PRC1.4, leading to the repression of transcription of p16-INK4A and p14-ARF from the CDKN2A locus, where PCR1.4 mediated repression of p14-ARF transcription in humans may be context dependent (Voncken et al. 2005, Dietrich et al. 2007, Agherbi et al. 2009, Gao et al. 2012). MAPKAPK2 and MAPKAPK3, activated downstream of the MAP3K5-p38 MAPK cascade, phosphorylate BMI1 of the PRC1.4 complex, leading to dissociation of PRC1.4 complex from the CDKN2A locus and upregulation of p14-ARF transcription (Voncken et al. 2005). AP-1 transcription factor, formed as a result of MAP3K5-JNK signaling, as well as RAS signaling, binds the promoter of KDM6B (JMJD3) gene and stimulates KDM6B expression. KDM6B is a histone demethylase that removes H3K27Me3 mark i.e. demethylates lysine K28 of HIST1H3A, thereby preventing PRC1.4 binding to the CDKN2A locus and allowing transcription of p16-INK4A (Agger et al. 2009, Barradas et al. 2009, Lin et al. 2012).


p16-INK4A inhibits phosphorylation-mediated inactivation of RB family members by CDK4 and CDK6, leading to cell cycle arrest (Serrano et al. 1993). p14-ARF inhibits MDM2-mediated degradation of TP53 (p53) (Zhang et al. 1998), which also contributes to cell cycle arrest in cells undergoing oxidative stress. In addition, phosphorylation of TP53 by MAPKAPK5 (PRAK) activated downstream of MAP3K5-p38 MAPK signaling, activates TP53 and contributes to cellular senescence (Sun et al. 2007).

PIN1 ProteinQ13526 (Uniprot-TrEMBL)
PLK3ProteinQ9H4B4 (Uniprot-TrEMBL)
PRKAB1 ProteinQ9Y478 (Uniprot-TrEMBL)
PRKAB2 ProteinO43741 (Uniprot-TrEMBL)
PRKAG1 ProteinP54619 (Uniprot-TrEMBL)
PRKAG2 ProteinQ9UGJ0 (Uniprot-TrEMBL)
PRKAG3 ProteinQ9UGI9 (Uniprot-TrEMBL)
PolyUb-DYRK2ProteinQ92630 (Uniprot-TrEMBL)
RAD1 ProteinO60671 (Uniprot-TrEMBL)
RAD17 ProteinO75943 (Uniprot-TrEMBL)
RAD50 ProteinQ92878 (Uniprot-TrEMBL)
RAD9A ProteinQ99638 (Uniprot-TrEMBL)
RAD9B ProteinQ6WBX8 (Uniprot-TrEMBL)
RFC2 ProteinP35250 (Uniprot-TrEMBL)
RFC3 ProteinP40938 (Uniprot-TrEMBL)
RFC4 ProteinP35249 (Uniprot-TrEMBL)
RFC5 ProteinP40937 (Uniprot-TrEMBL)
RHNO1 ProteinQ9BSD3 (Uniprot-TrEMBL)
RMI1 ProteinQ9H9A7 (Uniprot-TrEMBL)
RMI2 ProteinQ96E14 (Uniprot-TrEMBL)
RPA1 ProteinP27694 (Uniprot-TrEMBL)
RPA2 ProteinP15927 (Uniprot-TrEMBL)
RPA3 ProteinP35244 (Uniprot-TrEMBL)
RPS27A(1-76) ProteinP62979 (Uniprot-TrEMBL)
Regulation of TP53

Expression and

Degradation
PathwayR-HSA-6806003 (Reactome) TP53 (p53) tumor suppressor protein is a transcription factor that functions as a homotetramer (Jeffrey et al. 1995). The protein levels of TP53 are low in unstressed cells due to MDM2-mediated ubiquitination that triggers proteasome-mediated degradation of TP53 (Wu et al. 1993). The E3 ubiquitin ligase MDM2 functions as a homodimer/homo-oligomer or a heterodimer/hetero-oligomer with MDM4 (MDMX) (Linares et al. 2003, Toledo and Wahl 2007, Cheng et al. 2011, Wade et al. 2013).

Activating phosphorylation of TP53 at serine residues S15 and S20 in response to genotoxic stress disrupts TP53 interaction with MDM2. In contrast to MDM2, E3 ubiquitin ligases RNF34 (CARP1) and RFFL (CARP2) can ubiquitinate phosphorylated TP53 (Yang et al. 2007). Binding of MDM2 to TP53 is also inhibited by the tumor suppressor p14-ARF, transcribed from the CDKN2A gene in response to oncogenic signaling or oxidative stress (Zhang et al. 1998, Parisi et al. 2002, Voncken et al. 2005). Ubiquitin-dependant degradation of TP53 can also be promoted by PIRH2 (Leng et al. 2003) and COP1 (Dornan et al. 2004) ubiquitin ligases. HAUSP (USP7) can deubiquitinate TP53, contributing to TP53 stabilization (Li et al. 2002).

While post-translational regulation plays a prominent role, TP53 activity is also controlled at the level of promoter function (reviewed in Saldana-Meyer and Recillas-Targa 2011), mRNA stability and translation efficiency (Mahmoudi et al. 2009, Le et al. 2009, Takagi et al. 2005).

SSRP1 ProteinQ08945 (Uniprot-TrEMBL)
STK11 ProteinQ15831 (Uniprot-TrEMBL)
STK11ProteinQ15831 (Uniprot-TrEMBL)
SUPT16H ProteinQ9Y5B9 (Uniprot-TrEMBL) DSIF is a heterodimer consisting of hSPT4 (human homolog of yeast Spt4- p14) and hSPT5 (human homolog of yeast Spt5-p160). DSIF association with Pol II may be enabled by Spt5 binding to Pol II creating a scaffold for NELF binding (Wada et al.,1998). Spt5 subunit of DSIF can be phosphorylated by P-TEFb.
TAF1 ProteinP21675 (Uniprot-TrEMBL)
TAF10 ProteinQ12962 (Uniprot-TrEMBL)
TAF11 ProteinQ15544 (Uniprot-TrEMBL)
TAF12 ProteinQ16514 (Uniprot-TrEMBL)
TAF13 ProteinQ15543 (Uniprot-TrEMBL)
TAF15 ProteinQ92804 (Uniprot-TrEMBL)
TAF1L ProteinQ8IZX4 (Uniprot-TrEMBL)
TAF2 ProteinQ6P1X5 (Uniprot-TrEMBL)
TAF3 ProteinQ5VWG9 (Uniprot-TrEMBL)
TAF4 ProteinO00268 (Uniprot-TrEMBL)
TAF4B ProteinQ92750 (Uniprot-TrEMBL)
TAF5 ProteinQ15542 (Uniprot-TrEMBL)
TAF6 ProteinP49848 (Uniprot-TrEMBL)
TAF7 ProteinQ15545 (Uniprot-TrEMBL)
TAF7L ProteinQ5H9L4 (Uniprot-TrEMBL)
TAF9 ProteinQ16594 (Uniprot-TrEMBL)
TAF9B ProteinQ9HBM6 (Uniprot-TrEMBL)
TBP ProteinP20226 (Uniprot-TrEMBL)
TFIIDComplexR-HSA-109626 (Reactome)
TOP3A ProteinQ13472 (Uniprot-TrEMBL)
TOPBP1 ProteinQ92547 (Uniprot-TrEMBL)
TP53 Tetramer:STK11:NUAK1ComplexR-HSA-6805036 (Reactome)
TP53 Tetramer:STK11:p-T211-NUAK1ComplexR-HSA-6805037 (Reactome)
TP53 ProteinP04637 (Uniprot-TrEMBL)
TP53 Tetramer:HIPK1ComplexR-HSA-6799433 (Reactome)
TP53 TetramerComplexR-HSA-3209194 (Reactome)
TP53INP1 ProteinQ96A56 (Uniprot-TrEMBL)
TP53INP1:p-HIPK2:PIN1:p-S15,S20-TP53ComplexR-HSA-3215242 (Reactome)
TP53INP1ProteinQ96A56 (Uniprot-TrEMBL)
TP53RKProteinQ96S44 (Uniprot-TrEMBL)
TPX2 ProteinQ9ULW0 (Uniprot-TrEMBL)
UBA52(1-76) ProteinP62987 (Uniprot-TrEMBL)
UBB(1-76) ProteinP0CG47 (Uniprot-TrEMBL)
UBB(153-228) ProteinP0CG47 (Uniprot-TrEMBL)
UBB(77-152) ProteinP0CG47 (Uniprot-TrEMBL)
UBC(1-76) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(153-228) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(229-304) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(305-380) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(381-456) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(457-532) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(533-608) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(609-684) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(77-152) ProteinP0CG48 (Uniprot-TrEMBL)
UbComplexR-HSA-68524 (Reactome)
WRN ProteinQ14191 (Uniprot-TrEMBL)
adenosine 5'-monophosphate MetaboliteCHEBI:16027 (ChEBI)
p-HIPK2 ProteinQ9H2X6 (Uniprot-TrEMBL)
p-HIPK2:PIN1ComplexR-HSA-6799392 (Reactome)
p-S,3T-CHEK2ProteinO96017 (Uniprot-TrEMBL)
p-S15,S20,S269,T284-TP53 ProteinP04637 (Uniprot-TrEMBL)
p-S15,S20,S392-TP53 TetramerComplexR-HSA-6805046 (Reactome)
p-S15,S20,S392-TP53 ProteinP04637 (Uniprot-TrEMBL)
p-S15,S20,S46-TP53 TetramerComplexR-HSA-6798371 (Reactome)
p-S15,S20,S46-TP53 ProteinP04637 (Uniprot-TrEMBL)
p-S15,S20-TP53 TetramerComplexR-HSA-3222171 (Reactome)
p-S15,S20-TP53 ProteinP04637 (Uniprot-TrEMBL)
p-S15,S33,S46-TP53 TetramerComplexR-HSA-6805275 (Reactome)
p-S15,S33,S46-TP53 ProteinP04637 (Uniprot-TrEMBL)
p-S15,S392-TP53 TetramerComplexR-HSA-3222017 (Reactome)
p-S15,S392-TP53 ProteinP04637 (Uniprot-TrEMBL)
p-S15-TP53 ProteinP04637 (Uniprot-TrEMBL)
p-S15-TP53 TetramerComplexR-HSA-349474 (Reactome)
p-S166,S188-MDM2

dimer,

p-S166,S188-MDM2:MDM4
ComplexR-HSA-6804745 (Reactome)
p-S166,S188-MDM2 ProteinQ00987 (Uniprot-TrEMBL)
p-S1981,Ac-K3016-ATM ProteinQ13315 (Uniprot-TrEMBL)
p-S1981,Ac-K3016-ATMProteinQ13315 (Uniprot-TrEMBL)
p-S315-TP53 ProteinP04637 (Uniprot-TrEMBL)
p-S315-TP53 TetramerComplexR-HSA-6805104 (Reactome)
p-S317,S345-CHEK1ProteinO14757 (Uniprot-TrEMBL)
p-S327,T847,T859-RBBP8 ProteinQ99708 (Uniprot-TrEMBL)
p-S343-NBN ProteinO60934 (Uniprot-TrEMBL)
p-S37-TP53 ProteinP04637 (Uniprot-TrEMBL)
p-S37-TP53 TetramerComplexR-HSA-3239015 (Reactome)
p-S988,S1387,S1423,S1524,S1547-BRCA1 ProteinP38398 (Uniprot-TrEMBL)
p-S990,Ac-K1249-BRIP1 ProteinQ9BX63 (Uniprot-TrEMBL)
p-T106,S442-DYRK2ProteinQ92630 (Uniprot-TrEMBL)
p-T160-CDK2 ProteinP24941 (Uniprot-TrEMBL)
p-T172-PRKAA2 ProteinP54646 (Uniprot-TrEMBL)
p-T180,Y182-MAPK11 ProteinQ15759 (Uniprot-TrEMBL)
p-T180,Y182-MAPK14 ProteinQ16539 (Uniprot-TrEMBL)
p-T182-MAPKAPK5 ProteinQ8IW41 (Uniprot-TrEMBL)
p-T183-PRKAA1 ProteinQ13131 (Uniprot-TrEMBL)
p-T211-NUAK1 ProteinO60285 (Uniprot-TrEMBL)
p-T211-NUAK1ProteinO60285 (Uniprot-TrEMBL)
p-T288-AURKA ProteinO14965 (Uniprot-TrEMBL)
p-T288-AURKA:TPX2ComplexR-HSA-6805100 (Reactome)
p-T55-TP53 ProteinP04637 (Uniprot-TrEMBL)
p-T55-TP53 TetramerComplexR-HSA-6805395 (Reactome)
p-T714,T734-BARD1 ProteinQ99728 (Uniprot-TrEMBL)
p-Y15,S159-CDK5 ProteinQ00535 (Uniprot-TrEMBL)
p-Y15,S159-CDK5:CDK5R1 (99-307)ComplexR-HSA-6805271 (Reactome)
phospho-p38 MAPK:p-T-182-MAPKAPK5ComplexR-HSA-3239017 (Reactome)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
ADPArrowR-HSA-3222006 (Reactome)
ADPArrowR-HSA-3222020 (Reactome)
ADPArrowR-HSA-3239014 (Reactome)
ADPArrowR-HSA-5693609 (Reactome)
ADPArrowR-HSA-6798372 (Reactome)
ADPArrowR-HSA-6798374 (Reactome)
ADPArrowR-HSA-6799246 (Reactome)
ADPArrowR-HSA-6799332 (Reactome)
ADPArrowR-HSA-6799409 (Reactome)
ADPArrowR-HSA-6805059 (Reactome)
ADPArrowR-HSA-6805103 (Reactome)
ADPArrowR-HSA-6805109 (Reactome)
ADPArrowR-HSA-6805126 (Reactome)
ADPArrowR-HSA-6805276 (Reactome)
ADPArrowR-HSA-6805285 (Reactome)
ADPArrowR-HSA-6805399 (Reactome)
ADPArrowR-HSA-6805470 (Reactome)
ADPArrowR-HSA-6805479 (Reactome)
ADPArrowR-HSA-69685 (Reactome)
ATPR-HSA-3222006 (Reactome)
ATPR-HSA-3222020 (Reactome)
ATPR-HSA-3239014 (Reactome)
ATPR-HSA-5693609 (Reactome)
ATPR-HSA-6798372 (Reactome)
ATPR-HSA-6798374 (Reactome)
ATPR-HSA-6799246 (Reactome)
ATPR-HSA-6799332 (Reactome)
ATPR-HSA-6799409 (Reactome)
ATPR-HSA-6805059 (Reactome)
ATPR-HSA-6805103 (Reactome)
ATPR-HSA-6805109 (Reactome)
ATPR-HSA-6805126 (Reactome)
ATPR-HSA-6805276 (Reactome)
ATPR-HSA-6805285 (Reactome)
ATPR-HSA-6805399 (Reactome)
ATPR-HSA-6805470 (Reactome)
ATPR-HSA-6805479 (Reactome)
ATPR-HSA-69685 (Reactome)
ATR:ATRIP:RPA:3'

overhanging

ssDNA-DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:BRCA1-C complex:EXO1,DNA2:BLM,WRN:p-S990,Ac-K1249-BRIP1:RAD17:RFC:RAD9:HUS1:RAD1:RHNO1:TOPBP1
mim-catalysisR-HSA-6799332 (Reactome)
AURKB:NOC2L:p-S15,S20,S269,T284-TP53ArrowR-HSA-6805126 (Reactome)
AURKB:NOC2L:p-S15,S20-TP53ArrowR-HSA-6805122 (Reactome)
AURKB:NOC2L:p-S15,S20-TP53R-HSA-6805126 (Reactome)
AURKB:NOC2L:p-S15,S20-TP53mim-catalysisR-HSA-6805126 (Reactome)
AURKBR-HSA-6805122 (Reactome)
Activated AMPK heterotrimermim-catalysisR-HSA-6805470 (Reactome)
CCNA:p-T160-CDK2mim-catalysisR-HSA-6805109 (Reactome)
CK2:FACTArrowR-HSA-6805061 (Reactome)
CK2:FACTmim-catalysisR-HSA-6805059 (Reactome)
Casein kinase IIR-HSA-6805061 (Reactome)
DYRK2R-HSA-6798372 (Reactome)
DYRK2R-HSA-6798373 (Reactome)
FACT complexR-HSA-6805061 (Reactome)
HIPK1R-HSA-6799431 (Reactome)
NOC2L:p-S15,S20-TP53ArrowR-HSA-3222128 (Reactome)
NOC2L:p-S15,S20-TP53R-HSA-6805122 (Reactome)
NOC2LR-HSA-3222128 (Reactome)
NUAK1R-HSA-6805035 (Reactome)
PLK3mim-catalysisR-HSA-6805285 (Reactome)
PolyUb-DYRK2ArrowR-HSA-6798373 (Reactome)
R-HSA-3215251 (Reactome) TP53INP1 (p53INP1) forms a complex with TP53 and its regulating kinase HIPK2 (Tomasini et al. 2003, Okamura et al. 2001). HIPK2 undergoes autophosphorylation in response to DNA damage, but the mechanism and the identity of autophosphorylation sites have not yet been fully elucidated (Bitomsky et al. 2013, Saul et al. 2013, Siepi et al. 2013). Autophosphorylation enables HIPK2 binding to PIN1. PIN1 likely facilitates a conformational change that enables HIPK2 to phosphorylate its targets, including TP53 (Bitomsky et al. 2013).
R-HSA-3222006 (Reactome) STK11 (LKB1) phosphorylates NUAK1 at threonine residue T211, resulting in NUAK1 activation (Hou et al. 2011).
R-HSA-3222020 (Reactome) NUAK1, activated by STK11 (LKB1)-mediated phosphorylation on threonine residue T211, phosphorylates TP53 (p53) on serine residues S15 and S392, contributing to TP53-mediated transcriptional activation of the CDKN1A (p21) gene (Zeng and Berger 2006, Hou et al. 2011).
R-HSA-3222128 (Reactome) NOC2L (NIR) is an inhibitor of histone acetyltransferases that associates with TP53 (p53). NOC2L binding represses TP53-mediated transcriptional activation at TP53 target genes. One possible mechanism is the prevention of activating histone acetylation at TP53 target genes (Hublitz et al. 2005).
R-HSA-3239014 (Reactome) Activated MAPKAPK5 (PRAK) phosphorylates TP53 (p53) on serine residue S37, thereby activating it. MAPKAPK5-mediated phosphorylation of TP53 promotes growth arrest and senescence induced by oncogenic RAS, but is not needed for TP53-dependent growth arrest in response to DNA damage (Sun et al. 2007).
R-HSA-5693609 (Reactome) In response to DNA double strand breaks, serine at position 15 of the TP53 (p53) tumor suppressor protein is rapidly phosphorylated by the ATM kinase. This serves to stabilize the p53 protein. A rise in the levels of the p53 protein induces the expression of p21 cyclin-dependent kinase inhibitor. This prevents the normal progression from G1 to S phase, thus providing a check on replication of damaged DNA (Banin et al. 1998, Canman et al. 1998, Khanna et al. 1998).
R-HSA-6798372 (Reactome) Activated ATM kinase phosphorylates DYRK2 at threonine residue T106 (matching T33 in the shorter splicing isoform of DYRK2) and serine residue S442 (matching S369 in the shorter splicing isoform of DYRK2). ATM-mediated phosphorylation of DYRK2 prevents DYRK2 ubiquitination by MDM2 and the consequent DYRK2 degradation (Taira et al. 2010).
R-HSA-6798373 (Reactome) MDM2 ubiquitinates DYRK2 in the nucleus, leading to proteasome-mediated degradation of DYRK2. This results in the removal of nuclear DYRK2 and exclusive localization of DYRK2 in the cytosol in the absence of DNA damage. ATM-mediated phosphorylation of DYRK2 prevents ubiquitination of DYRK2 by MDM2, leading to accumulation of nuclear DYRK2 (Taira et al. 2010).
R-HSA-6798374 (Reactome) DYRK2 phosphorylates TP53 at serine residue S46 (Taira et al. 2007).
R-HSA-6799246 (Reactome) CHEK1, activated by ATR-mediated phosphorylation, can phosphorylate TP53 at serine residue S20, resulting in the increased half-life of TP53 (Shieh et al. 2000).
R-HSA-6799332 (Reactome) ATR, bound to DNA damage sites, phosphorylates TP53 (p53) at serine residue S15. S15 phosphorylation stabilizes TP53 by inhibiting the binding of TP53 to the ubiquitin ligase MDM2 (Tibbetts et al. 1999, Lakin et al. 1999).
R-HSA-6799409 (Reactome) HIPK2, activated by autophosphorylation in response to DNA damage, phosphorylates TP53 (p53) at serine residue S46 (D'Orazi et al. 2002, Hofmann et al. 2002). A TP53 transcriptional target TP53INP1 facilitates TP53 phosphorylation at S46 in response to double strand breaks and, together with HIPK2, promotes the transcription of TP53 apoptotic gene targets (Okamura et al. 2001, Tomasini et al. 2003).
R-HSA-6799431 (Reactome) TP53 (p53) forms a complex with a protein kinase HIPK1 (Kondo et al. 2003, Rey et al. 2013). HIPK1 may phosphorylate TP53 on an unidentified serine residue (Kondo et al. 2003). Binding to HIPK1 has been implicated in the negative regulation of TP53 activity (Kondo et al. 2003), but HIPK1 overexpression has also been implicated in the positive regulation of TP53 activity (Rey et al. 2013).
R-HSA-6805035 (Reactome) In the presence of STK11 (LTKB1), TP53 associates with NUAK1 (Zeng and Berger 2006, Hou et al. 2011).
R-HSA-6805059 (Reactome) Casein kinase II (CK2), associated with the FACT2 complex, phosphorylates TP53 (p53) at serine residue S392, enhancing transcriptional activity of TP53 in response to UV irradiation (Keller et al. 2001, Keller and Lu 2002).
R-HSA-6805061 (Reactome) In response to UV radiation, the casein kinase II (CK2) complex associates with the FACT complex (Keller et al. 2001, Keller and Lu 2002).
R-HSA-6805103 (Reactome) AURKA (Aurora kinase A) phosphorylates TP53 (p53) on serine residue S315. This leads to destabilization of TP53 by enhancing MDM2 binding (Katayama et al. 2004). Based on Xenopus studies, AURKA-mediated phosphorylation of TP53 occurs in the presence of AURKA activator TPX2 (Pascreau et al. 2009).
R-HSA-6805109 (Reactome) CDK2, bound to CCNA (cyclin A), phosphorylates TP53 on serine residue S315 (Luciani et al. 2000).
R-HSA-6805122 (Reactome) AURKB (Aurora kinase B) is recruited to TP53 (p53) through interaction with NOC2L (NIR) (Wu et al. 2011).
R-HSA-6805126 (Reactome) AURKB (Aurora kinase B) phosphorylates TP53 (p53) at serine residue S269 and threonine residue T284, which inhibits TP53 transcriptional activity (Wu et al. 2011).
R-HSA-6805276 (Reactome) CDK5, in complex with cleaved CDK5R1 (p25), which ensures nuclear localization (Patrick et al. 1999, Lee et al. 2008), phosphorylates TP53 (p53) on serine residues S15, S33 and S46. CDK5-mediated phosphorylation of TP53 promotes transcription of pro-apoptotic genes and neuronal cell death (Zhang et al. 2002, Lee et al. 2007, Lee et al. 2008).
R-HSA-6805285 (Reactome) PLK3 contributes to stabilizing phosphorylation of TP53 on serine residue S20 (Xie, Wang et al. 2001, Xie, Wu et al. 2001).
R-HSA-6805399 (Reactome) TAF1, the largest subunit of the transcription initiation factor TFIID complex, phosphorylates TP53 (p53) at threonine residue T55. TAF1-mediated phosphorylation of TP53 increases affinity of TP53 for the ubiquitin ligase MDM2, thus promoting TP53 degradation (Li et al. 2004).
R-HSA-6805470 (Reactome) AMPK, activated in response to glucose deprivation, phosphorylates TP53 (p53) on serine residue S15, initiating AMPK-dependent cell cycle arrest (Jones et al. 2005). AMPK-dependent phosphorylation of TP73 (p73) appears to be involved in TP53 stabilization upon AMPK activation (Adamovich et al. 2014).
R-HSA-6805479 (Reactome) The atypical protein serine/threonine kinase TP53RK (TP53-regulating kinase), also known as PRPK (p53-related protein kinase), phosphorylates TP53 (p53) on serine residue S15 (Abe et al. 2001, Facchin et al. 2003).
R-HSA-69685 (Reactome) CHEK2 (Chk2) phosphorylates TP53 (p53) at serine residue S20 (Hirao et al. 2000, Shieh et al. 2000, Chehab et al. 2000). Phosphorylation of TP53 at serine residue S20 is necessary for DNA damage-induced TP53 stabilization as it compromises the interaction of TP53 with the ubiquitin ligase MDM2 (Chehab et al. 1999, Chehab et al. 2000). S20 phosphorylation is also required for the induction of TP53-dependent transcripts in response to DNA damage (Hirao et al. 2000).
STK11ArrowR-HSA-3222020 (Reactome)
STK11R-HSA-6805035 (Reactome)
TFIIDmim-catalysisR-HSA-6805399 (Reactome)
TP53 Tetramer:STK11:NUAK1ArrowR-HSA-6805035 (Reactome)
TP53 Tetramer:STK11:NUAK1R-HSA-3222006 (Reactome)
TP53 Tetramer:STK11:NUAK1mim-catalysisR-HSA-3222006 (Reactome)
TP53 Tetramer:STK11:p-T211-NUAK1ArrowR-HSA-3222006 (Reactome)
TP53 Tetramer:STK11:p-T211-NUAK1R-HSA-3222020 (Reactome)
TP53 Tetramer:STK11:p-T211-NUAK1mim-catalysisR-HSA-3222020 (Reactome)
TP53 Tetramer:HIPK1ArrowR-HSA-6799431 (Reactome)
TP53 TetramerR-HSA-3239014 (Reactome)
TP53 TetramerR-HSA-5693609 (Reactome)
TP53 TetramerR-HSA-6799332 (Reactome)
TP53 TetramerR-HSA-6799431 (Reactome)
TP53 TetramerR-HSA-6805035 (Reactome)
TP53 TetramerR-HSA-6805103 (Reactome)
TP53 TetramerR-HSA-6805109 (Reactome)
TP53 TetramerR-HSA-6805276 (Reactome)
TP53 TetramerR-HSA-6805399 (Reactome)
TP53 TetramerR-HSA-6805470 (Reactome)
TP53 TetramerR-HSA-6805479 (Reactome)
TP53INP1:p-HIPK2:PIN1:p-S15,S20-TP53ArrowR-HSA-3215251 (Reactome)
TP53INP1:p-HIPK2:PIN1:p-S15,S20-TP53R-HSA-6799409 (Reactome)
TP53INP1:p-HIPK2:PIN1:p-S15,S20-TP53mim-catalysisR-HSA-6799409 (Reactome)
TP53INP1ArrowR-HSA-6799409 (Reactome)
TP53INP1R-HSA-3215251 (Reactome)
TP53RKmim-catalysisR-HSA-6805479 (Reactome)
UbR-HSA-6798373 (Reactome)
p-HIPK2:PIN1ArrowR-HSA-6799409 (Reactome)
p-HIPK2:PIN1R-HSA-3215251 (Reactome)
p-S,3T-CHEK2mim-catalysisR-HSA-69685 (Reactome)
p-S15,S20,S392-TP53 TetramerArrowR-HSA-6805059 (Reactome)
p-S15,S20,S46-TP53 TetramerArrowR-HSA-6798374 (Reactome)
p-S15,S20,S46-TP53 TetramerArrowR-HSA-6799409 (Reactome)
p-S15,S20-TP53 TetramerArrowR-HSA-6799246 (Reactome)
p-S15,S20-TP53 TetramerArrowR-HSA-6805285 (Reactome)
p-S15,S20-TP53 TetramerArrowR-HSA-69685 (Reactome)
p-S15,S20-TP53 TetramerR-HSA-3215251 (Reactome)
p-S15,S20-TP53 TetramerR-HSA-3222128 (Reactome)
p-S15,S20-TP53 TetramerR-HSA-6798374 (Reactome)
p-S15,S20-TP53 TetramerR-HSA-6805059 (Reactome)
p-S15,S33,S46-TP53 TetramerArrowR-HSA-6805276 (Reactome)
p-S15,S392-TP53 TetramerArrowR-HSA-3222020 (Reactome)
p-S15-TP53 TetramerArrowR-HSA-5693609 (Reactome)
p-S15-TP53 TetramerArrowR-HSA-6799332 (Reactome)
p-S15-TP53 TetramerArrowR-HSA-6805470 (Reactome)
p-S15-TP53 TetramerArrowR-HSA-6805479 (Reactome)
p-S15-TP53 TetramerR-HSA-6799246 (Reactome)
p-S15-TP53 TetramerR-HSA-6805285 (Reactome)
p-S15-TP53 TetramerR-HSA-69685 (Reactome)
p-S166,S188-MDM2

dimer,

p-S166,S188-MDM2:MDM4
mim-catalysisR-HSA-6798373 (Reactome)
p-S1981,Ac-K3016-ATMmim-catalysisR-HSA-5693609 (Reactome)
p-S1981,Ac-K3016-ATMmim-catalysisR-HSA-6798372 (Reactome)
p-S315-TP53 TetramerArrowR-HSA-6805103 (Reactome)
p-S315-TP53 TetramerArrowR-HSA-6805109 (Reactome)
p-S317,S345-CHEK1mim-catalysisR-HSA-6799246 (Reactome)
p-S37-TP53 TetramerArrowR-HSA-3239014 (Reactome)
p-T106,S442-DYRK2ArrowR-HSA-6798372 (Reactome)
p-T106,S442-DYRK2mim-catalysisR-HSA-6798374 (Reactome)
p-T211-NUAK1ArrowR-HSA-3222020 (Reactome)
p-T288-AURKA:TPX2mim-catalysisR-HSA-6805103 (Reactome)
p-T55-TP53 TetramerArrowR-HSA-6805399 (Reactome)
p-Y15,S159-CDK5:CDK5R1 (99-307)mim-catalysisR-HSA-6805276 (Reactome)
phospho-p38 MAPK:p-T-182-MAPKAPK5mim-catalysisR-HSA-3239014 (Reactome)

Personal tools