Selenoamino acid metabolism (Homo sapiens)

From WikiPathways

Revision as of 11:23, 1 November 2018 by ReactomeTeam (Talk | contribs)
(diff) ←Older revision | Current revision (diff) | Newer revision→ (diff)
Jump to: navigation, search
36813133, 289, 11, 1819, 24151721, 374, 3323, 3756, 357, 34292295132031710, 12, 2227, 3121, 30202625321, 16, 389, 11, 18823, 37cytosolRPL6 H+RPL21 EPRS RPS18 MAT1A multimersRPL27 GSR-2:FAD dimerNH3RARS RPL4 RPS21 RPS14 Me3Se+MeHist,N1MNA,MeGlyDARS 28S rRNA SEPSECS RPS3 RPS27A(77-156) RPL26L1 Ser-tRNA(Sec)GTP RPS13 RPL35 RPL34 NADPHL-AlaRPL27A H2SeSeCystaGSHRPL36A RPL8 RPS5 RPS3A RPL40 NH3AMPRPL32 5S rRNA RPS27 RPLP1 RPL38 Met-tRNAi RPS28 RPS19 RPL14 RPL10L RPS15 RPL10A RPS17 5.8S rRNA L-SerNADP+H2ORPL31 RPSA AMPH2ORPS19 RPS24 RPL7 RPL24 SECISBP2 NAM TXNRD1 PAPSS1 RPS2 RPL5 RPL36A RPL32 GSHPiRPL26 H2OGSSeHRPL37 RPS16 RPS8 SeMetRPS27 Ceruloplasmin mRNA Hist RPS24 RPL39L RPL37A RPS27L RPL30 AdoMetRPL17 RPS27A(77-156) RPL3L NADP+RPL24 RPL3L RPS3 RPS23 FAD 5.8S rRNA SECISBP2RPS4Y1 RPL9 Sec-tRNA(Sec)NNMT MeSebGalNacRPL29 bGalNAc derivativePAPSeRFAU RPL36A L-SerRPS4X FAU RPL23A ADPRPLP0 RPL31 MARS bGalNAcATPCTH 18S rRNA RPL6 RPSA MSDMTXNRD1 RPS2 5.8S rRNA H2OATPRPS16 RPL21 RPS27 RPL12 NADP+SCLY SeHCysAdoHcyLARS KARS RPS4X RPL41 RPL27 RPL15 GSSGRPL15 H+Sec-tRNA(Sec):EEFSEC:GTPRPL18 GSHEEFSEC:GDPRPL22 28S rRNA NADPHRPS10 RPL5 RPL23 80S:Met-tRNAi:mRNARPL28 RPS14 NADP+RPS15A RPS6 RPL23A RPL23A PPiSEPHS2RPL13 pyruvic acidRPS25 PXLP PAPSS1,2Ceruloplasmin mRNA RPL3 RPS15A RPL22L1 RPS23 RPL4 PXLP RPL35A AdoHcyRPS14 RPS20 RPL5 EEF1E1 H+TNXRD1:FAD dimerRPL7 NADPHRPS23 RPL36AL RPL18 MeSeHMTRPL15 RPL34 Ceruloplasmin mRNA RPL13 RPL7A PSTK:Mg2+RPLP0 RPS4Y2 RPL18A PiH2SeO4RPLP2 AdoMetRPL3 RPL22L1 RPL12 RPS27A(77-156) EEFSEC EEFSEC RPL19 RPL10 SEPSECStetramer:PXLPH2ORPS12 CTH tetramer:PXLPPSTK RPS7 AHCYRPS17 FAD RPL10 H2ORPS15 RPS3A MeHist RPL37 MeOHSARS dimer5S rRNA RPS29 RPL11 RPL10L RPS10 Me2SeHist,NAM,GlyMeSecH2ORPS9 RPL36 MeSeHRPL22 Met-tRNAi RPL41 SeO3(2-)RPS21 H2OADPTNXRD1:FAD dimerPAPaminoacyl-tRNAsynthetasemultienzyme complexRPL28 H2Oreduced acceptorFAD SARS RPS4Y2 GSSebGalNacRPS7 RPS9 RPL13A RPS10 NADPHRPS17 RPL28 RPS8 RPS13 RPL26L1 heme RPS8 GSR-2 RPL29 RPS26 Ade-RibGSHRPL32 H3PO4RPS27L Sec-tRNA(Sec) AIMP2 RPS21 K+ AdoHcyRPL40 RPL35 RPL19 Sec GNMT INMTAdoSeMetPXLP-CBS GTP RPL23 RPL7A RPL39 RPS27L 5S rRNA ATPNADPHRPS25 RPL35A RPL23 RPS13 RPLP0 RPL17 RPL39L PAPSS2 2-acetamidoglucalRPL26 RPS29 Gly GDP RPL11 H2OEEFSEC RPL22 RPS28 RPL38 80S:Met-tRNAi:mRNA:SECISBP2:SecH+APSeRPS18 RPL36 AdoHcyRPL35 RPS9 RPL13 CTH RPL26 EEFSEC:GTPRPS12 PXLP tRNA(Met)tRNA(Sec)RPL10L RPL18A AdeSeHCysRPL30 PPiRPLP1 HSeMTRPL37A MeSeO2HacceptorRPL17 RPS4Y2 RPS4X RPL14 18S rRNA MAT1A RPS6 RPL18A GTP RPL37A RPL12 RPS20 18S rRNA QARS SARC RPL35A RPS20 PXLP RPS12 2OBUTARPS19 RPL9 RPS16 RPL3L PPiRPL19 HNMT RPL10A RPL4 SELPRPS25 RPLP2 RPL41 RPL9 SecRPS6 TNXRD1:FAD dimerRPL18 RPS5 RPL31 RPS29 RPL36AL FAU Mg2+ MeSeOHIARS RPS3 RPL10 RPS15A RPS11 H+H+H+SeMet-tRNA(Met)RPL8 ATPRPS7 CTH tetramer:PXLPH2ORPL34 RPS2 RPL24 RPSA RPLP1 RPL36AL RPL27 ATPRPL26L1 RPL14 RPS4Y1 H2OEEFSEC Met-tRNAi AMPRPS3A AIMP1(1-312) Sep-tRNA(Sec)RPL39 RPL37 RPS26 ATPRPS18 RPS15 80S:Met-tRNAi:mRNA:SECISBP2:Sec-tRNA(Sec):EEFSEC:GTPRPL6 GSSGPAPSS1,2RPL3 RPL7 FAD RPS11 RPLP2 ATP28S rRNA H2ORPL11 SCLY dimer:PXLPPPiRPL13A RPS24 RPL10A RPL13A MetTrans(1)RPL21 NADP+RPS26 RPL39 RPL38 Mg2+ SECISBP2 RPS11 RPL30 AdoMetRPL39L RPL29 RPL27A RPL7A RPL27A PAPSS2 Sec-tRNA(Sec) RPL40 RPS5 RPL22L1 PiRPL36 CBS tetramerRPS4Y1 GSSeSGPAPSeH2OMNA RPS28 2OBUTAPAPSS1 RPL8 TXNRD1 14


Description

Selenium (Se) is a trace element essential for the normal function of the body. Selenoamino acids are defined as those amino acids where selenium has been substituted for sulphur. Selenium and sulphur share many chemical properties and so the substitution of normal amino acids with selenoamino acids has little effect on protein structure and function. Both inorganic (selenite, SeO3(2-); and selenate, SeO4(2-)) and organic (selenocysteine, Sec; and selenomethionine, SeMet) forms of selenium can be introduced in the diet where they are transformed into the intermediate selenide (Se(2-)) and then utilized for the de novo synthesis of Sec through a phosphorylated intermediate in a tRNA-dependent fashion. The final step of Sec formation is catalyzed by O-phosphoseryl-tRNA:selenocysteinyl-tRNA synthase (SEPSECS) that converts phosphoseryl-tRNA(Sec) to selenocysteinyl-tRNA(Sec).

All nutritional selenium is metabolised into selenide directly or through methylselenol (MeSeH). Sec liberated from selenoproteins is transformed to Se(2-) by selenocysteine lyase (SCLY). SeMet liberated from general proteins and from free SeMet sources is transformed into Se(2-) either through MeSeH by cystathionine gamma-lyase (CTH) followed by demethylation (SeMet to CH3SeH to H2Se), or through Sec by SCLY after the trans-selenation pathway (SeMet to Sec to H2Se). MeSec is hydrolysed into MeSeH by CTH. Methylseleninic acid (MeSeO2H) is reduced to methylselenol. MeSeH is demethylated to Se(2-) for further utilization for selenoprotein synthesis or oxidised to selenite (SeO3(2-)) for excretion in the form of selenosugar. Additionally, MeSeH is further methylated to dimethylselenide (Me2Se) and trimethylselenonium (Me3Se+) for excretion. View original pathway at:Reactome.

Comments

Reactome-Converter 
Pathway is converted from Reactome ID: 2408522
Reactome-version 
Reactome version: 66
Reactome Author 
Reactome Author: Williams, MG

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Okuno T, Kubota T, Kuroda T, Ueno H, Nakamuro K.; ''Contribution of enzymic alpha, gamma-elimination reaction in detoxification pathway of selenomethionine in mouse liver.''; PubMed
  2. Bánszky L, Simonics T, Maráz A.; ''Sulphate metabolism of selenate-resistant Schizosaccharomyces pombe mutants.''; PubMed
  3. Kajander EO, Harvima RJ, Eloranta TO, Martikainen H, Kantola M, Kärenlampi SO, Akerman K.; ''Metabolism, cellular actions, and cytotoxicity of selenomethionine in cultured cells.''; PubMed
  4. Eustice DC, Kull FJ, Shrift A.; ''Selenium toxicity: aminoacylation and Peptide bond formation with selenomethionine.''; PubMed
  5. Chavatte L, Brown BA, Driscoll DM.; ''Ribosomal protein L30 is a component of the UGA-selenocysteine recoding machinery in eukaryotes.''; PubMed
  6. Fagegaltier D, Hubert N, Yamada K, Mizutani T, Carbon P, Krol A.; ''Characterization of mSelB, a novel mammalian elongation factor for selenoprotein translation.''; PubMed
  7. Daher R, Van Lente F.; ''Characterization of selenocysteine lyase in human tissues and its relationship to tissue selenium concentrations.''; PubMed
  8. Kobayashi Y, Ogra Y, Ishiwata K, Takayama H, Aimi N, Suzuki KT.; ''Selenosugars are key and urinary metabolites for selenium excretion within the required to low-toxic range.''; PubMed
  9. Venkatachalam KV, Akita H, Strott CA.; ''Molecular cloning, expression, and characterization of human bifunctional 3'-phosphoadenosine 5'-phosphosulfate synthase and its functional domains.''; PubMed
  10. Heckl M, Busch K, Gross HJ.; ''Minimal tRNA(Ser) and tRNA(Sec) substrates for human seryl-tRNA synthetase: contribution of tRNA domains to serylation and tertiary structure.''; PubMed
  11. Xu ZH, Otterness DM, Freimuth RR, Carlini EJ, Wood TC, Mitchell S, Moon E, Kim UJ, Xu JP, Siciliano MJ, Weinshilboum RM.; ''Human 3'-phosphoadenosine 5'-phosphosulfate synthetase 1 (PAPSS1) and PAPSS2: gene cloning, characterization and chromosomal localization.''; PubMed
  12. Amberg R, Mizutani T, Wu XQ, Gross HJ.; ''Selenocysteine synthesis in mammalia: an identity switch from tRNA(Ser) to tRNA(Sec).''; PubMed
  13. Björnstedt M, Kumar S, Holmgren A.; ''Selenodiglutathione is a highly efficient oxidant of reduced thioredoxin and a substrate for mammalian thioredoxin reductase.''; PubMed
  14. Wolfe CL, Warrington JA, Davis S, Green S, Norcum MT.; ''Isolation and characterization of human nuclear and cytosolic multisynthetase complexes and the intracellular distribution of p43/EMAPII.''; PubMed
  15. Carlson BA, Xu XM, Kryukov GV, Rao M, Berry MJ, Gladyshev VN, Hatfield DL.; ''Identification and characterization of phosphoseryl-tRNA[Ser]Sec kinase.''; PubMed
  16. Okuno T, Motobayashi S, Ueno H, Nakamuro K.; ''Purification and characterization of mouse hepatic enzyme that converts selenomethionine to methylselenol by its alpha,gamma-elimination.''; PubMed
  17. Gromer S, Gross JH.; ''Methylseleninate is a substrate rather than an inhibitor of mammalian thioredoxin reductase. Implications for the antitumor effects of selenium.''; PubMed
  18. Yu M, Martin RL, Jain S, Chen LJ, Segel IH.; ''Rat liver ATP-sulfurylase: purification, kinetic characterization, and interaction with arsenate, selenate, phosphate, and other inorganic oxyanions.''; PubMed
  19. Yuan J, Palioura S, Salazar JC, Su D, O'Donoghue P, Hohn MJ, Cardoso AM, Whitman WB, Söll D.; ''RNA-dependent conversion of phosphoserine forms selenocysteine in eukaryotes and archaea.''; PubMed
  20. Suzuki KT, Somekawa L, Suzuki N.; ''Distribution and reuse of 76Se-selenosugar in selenium-deficient rats.''; PubMed
  21. Suzuki KT, Kurasaki K, Suzuki N.; ''Selenocysteine beta-lyase and methylselenol demethylase in the metabolism of Se-methylated selenocompounds into selenide.''; PubMed
  22. Vincent C, Tarbouriech N, Härtlein M.; ''Genomic organization, cDNA sequence, bacterial expression, and purification of human seryl-tRNA synthase.''; PubMed
  23. Hsieh HS, Ganther HE.; ''Biosynthesis of dimethyl selenide from sodium selenite in rat liver and kidney cell-free systems.''; PubMed
  24. Palioura S, Sherrer RL, Steitz TA, Söll D, Simonovic M.; ''The human SepSecS-tRNASec complex reveals the mechanism of selenocysteine formation.''; PubMed
  25. Kajander EO, Harvima RJ, Kauppinen L, Akerman KK, Martikainen H, Pajula RL, Kärenlampi SO.; ''Effects of selenomethionine on cell growth and on S-adenosylmethionine metabolism in cultured malignant cells.''; PubMed
  26. Tamura T, Yamamoto S, Takahata M, Sakaguchi H, Tanaka H, Stadtman TC, Inagaki K.; ''Selenophosphate synthetase genes from lung adenocarcinoma cells: Sps1 for recycling L-selenocysteine and Sps2 for selenite assimilation.''; PubMed
  27. Sun QA, Wu Y, Zappacosta F, Jeang KT, Lee BJ, Hatfield DL, Gladyshev VN.; ''Redox regulation of cell signaling by selenocysteine in mammalian thioredoxin reductases.''; PubMed
  28. Kajander EO, Raina AM.; ''Affinity-chromatographic purification of S-adenosyl-L-homocysteine hydrolase. Some properties of the enzyme from rat liver.''; PubMed
  29. Esaki N, Nakamura T, Tanaka H, Suzuki T, Morino Y, Soda K.; ''Enzymatic synthesis of selenocysteine in rat liver.''; PubMed
  30. Pinto JT, Lee JI, Sinha R, MacEwan ME, Cooper AJ.; ''Chemopreventive mechanisms of α-keto acid metabolites of naturally occurring organoselenium compounds.''; PubMed
  31. Kumar S, Björnstedt M, Holmgren A.; ''Selenite is a substrate for calf thymus thioredoxin reductase and thioredoxin and elicits a large non-stoichiometric oxidation of NADPH in the presence of oxygen.''; PubMed
  32. Mozier NM, McConnell KP, Hoffman JL.; ''S-adenosyl-L-methionine:thioether S-methyltransferase, a new enzyme in sulfur and selenium metabolism.''; PubMed
  33. Burnell JN.; ''Methionyl-tRNA Synthetase from Phaseolus aureus: Purification and Properties.''; PubMed
  34. Omi R, Kurokawa S, Mihara H, Hayashi H, Goto M, Miyahara I, Kurihara T, Hirotsu K, Esaki N.; ''Reaction mechanism and molecular basis for selenium/sulfur discrimination of selenocysteine lyase.''; PubMed
  35. Tujebajeva RM, Copeland PR, Xu XM, Carlson BA, Harney JW, Driscoll DM, Hatfield DL, Berry MJ.; ''Decoding apparatus for eukaryotic selenocysteine insertion.''; PubMed
  36. Fairweather-Tait SJ, Bao Y, Broadley MR, Collings R, Ford D, Hesketh JE, Hurst R.; ''Selenium in human health and disease.''; PubMed
  37. Ohta Y, Suzuki KT.; ''Methylation and demethylation of intermediates selenide and methylselenol in the metabolism of selenium.''; PubMed
  38. Okuno T, Ueno H, Nakamuro K.; ''Cystathionine gamma-lyase contributes to selenomethionine detoxification and cytosolic glutathione peroxidase biosynthesis in mouse liver.''; PubMed

History

View all...
CompareRevisionActionTimeUserComment
101347view11:23, 1 November 2018ReactomeTeamreactome version 66
100885view20:57, 31 October 2018ReactomeTeamreactome version 65
100426view19:31, 31 October 2018ReactomeTeamreactome version 64
99976view16:15, 31 October 2018ReactomeTeamreactome version 63
99530view14:51, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
99168view12:42, 31 October 2018ReactomeTeamreactome version 62
93759view13:34, 16 August 2017ReactomeTeamreactome version 61
93281view11:19, 9 August 2017ReactomeTeamreactome version 61
87653view08:55, 25 July 2016LindarieswijkOntology Term : 'selenoamino acid metabolic pathway' added !
86360view09:16, 11 July 2016ReactomeTeamNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
18S rRNA ProteinX03205 (EMBL)
2-acetamidoglucalMetaboliteCHEBI:73979 (ChEBI)
28S rRNA ProteinM11167 (EMBL)
2OBUTAMetaboliteCHEBI:30831 (ChEBI)
5.8S rRNA ProteinJ01866 (EMBL)
5S rRNA ProteinV00589 (EMBL)
80S:Met-tRNAi:mRNA:SECISBP2:Sec-tRNA(Sec):EEFSEC:GTPComplexR-HSA-5359044 (Reactome)
80S:Met-tRNAi:mRNA:SECISBP2:SecComplexR-HSA-5359053 (Reactome)
80S:Met-tRNAi:mRNAComplexR-HSA-72505 (Reactome)
ADPMetaboliteCHEBI:16761 (ChEBI)
AHCYProteinP23526 (Uniprot-TrEMBL)
AIMP1(1-312) ProteinQ12904 (Uniprot-TrEMBL)
AIMP2 ProteinQ13155 (Uniprot-TrEMBL)
AMPMetaboliteCHEBI:16027 (ChEBI)
APSeMetaboliteCHEBI:2485 (ChEBI)
ATPMetaboliteCHEBI:15422 (ChEBI)
Ade-RibMetaboliteCHEBI:16335 (ChEBI)
AdeSeHCysMetaboliteCHEBI:77028 (ChEBI)
AdoHcyMetaboliteCHEBI:16680 (ChEBI)
AdoMetMetaboliteCHEBI:15414 (ChEBI)
AdoSeMetMetaboliteCHEBI:9066 (ChEBI)
CBS tetramerComplexR-HSA-1614610 (Reactome)