Mitochondrial biogenesis (Homo sapiens)

From WikiPathways

Revision as of 11:20, 1 November 2018 by ReactomeTeam (Talk | contribs)
(diff) ←Older revision | Current revision (diff) | Newer revision→ (diff)
Jump to: navigation, search
4, 5, 13, 17, 20...18, 34, 40, 446914, 4733858, 12, 564823, 413362, 656, 16, 36, 62, 653348339, 68, 74, 8350, 55, 7062, 65, 7914, 26, 47, 57, 66...33, 712462, 6562, 83507, 4221, 39, 6562, 83289, 65nucleoplasmmitochondrial intermembrane spacemitochondrial matrixcytosolGLUD2 CREB1NAMAcK-SOD2 IDH2 p-T263,S266,T299-PPARGC1A SIRT3(?-399)NAMNRF2 gamma-1 subunit LINA ADPNR1D1 ACCS2,GLUD,IDH2,SOD2SIRT3(?-399):Zn2+ATPTFAM(1-246)p-T263,S266,T299-PPARGC1A NRF2 gamma-1 subunit p-T178,S539-PPARGC1A MTERFNCOA1 SMARCD3 p-T178,S539-PPARGC1ATFAM gene NRF2 gamma-1 subunit TFAMgene:NRF1:NRF2:PPRC1NRF1 SIRT5:Zn2+AcK-GLUD PPRC1 PPRC1 RibC-GLUD1 PRKAG2 TFAMgene:NRF1:NRF2:p-PPARGC1A,PPRC1TFAMgene:NRF1:p-PPARGC1A:NRF2NRF2 beta-1 subunit HCFC1 NRF1 NRF2 beta-2 subunitNRF1 GLUD ATP5B gene NRF1 Ca2+ TFB2MGABPARibC-GLUD2 HCFC1 PPRC1 NRF2 beta-1 subunit 2'-O-acetyl-ADP-riboseNRF2 beta-1 subunit AcK-ACSS2 p-S133-CREB1 TFB1M gene NRF2 beta-1 subunit ESRRAGABPA p-S133-CREB:CRTC1,2,3:PPARGC1A geneALAS1 gene MEF2C MTERF geneHCFC1 NAD+NAD+NRF2 beta-2 subunit ATPTBL1XR1 TFB2M gene NRF2 gamma-1 subunit NR1D1:heme:Corepressors:PPARGC1A geneNRF2 beta-2 subunit HDAC3 Zn2+ POLG2(?-485)TFB1M gene NRF2 gamma-2 subunit NRF2p-T172-PRKAA2 PERM1POLG2 geneNRF2 gamma-2 subunitferriheme b ATP5B geneCREBBP NRF2 gamma-1 subunit HELZ2 GLUDMAPK12 PEO1Palm NRF2 gamma-1 subunit NRF2 gamma-2 subunit p-S12,S13-CAMK4 EPA CYCSgene:NRF1:PPARGC1BAcK-IDH2 p-T178,S539-PPARGC1A PPARA CRTC1 p-AMPKheterotrimer:AMPRibC-GLUDGABPA ADPp-T178,S539-PPARGC1A MEF2D ESRRA geneTFB2Mgene:NRF1:p-PPARGC1A:NRF2p-T178,S539-PPARGC1A PPARGC1A gene TFB2M gene p-T263,S266,T299-PPARGC1A CHD9 TFB2Mgene:NRF1:NRF2:HCFC1:PPRC1NRF1 genep-T263,S266,T299-PPARGC1A PPARGC1B POLRMT geneNRF2 gamma-2 subunit p-PPARGC1Ap-T180,Y182-MAPK14 PPARGC1ANRF2 gamma-1 subunit NRF2 beta-2 subunit NRF2 beta-1 subunit phospho-p38alpha/beta/gammaMAPKNRF2 gamma-2 subunit CYCSGABPA NRF2 beta-2 subunit GABPA PPRC1 TGS1 phospho-CaMKIV:Calmodulinp-T178,S539-PPARGC1A GABPA Mitochondrialprotein importTFB2Mgene:NRF1:NRF2:p-PPARGC1A,PPRC1PRKAB2 NRF2 beta-2 subunit SIRT4 Cristae formationNRF2 gamma-2 subunit TFB1Mgene:NRF1:NRF2:HCFC1:PPRC1TFB1Mp-T263,S266,T299-PPARGC1A NRF2 beta-2 subunit CYCSp-T69,T71-ATF2p-T178,S539-PPARGC1A TFB1M genep-S133-CREB1TFAMATP5Bgene:NRF1:PPARGC1BPPARA:RXRACoactivator complexGABPA 2'-O-acetyl-ADP-riboseNRF2 beta-1 subunit HCFC1TFB1M gene NAD+PPRC1 SIRT3 geneGABPA NRF2 gamma-1 subunit p-T263,S266,T299-PPARGC1A AA ALAS1 geneNRF1 PRKAG3 NRF2 beta-1 subunit PERM1 geneAck-ACCS2,AcK-GLUD,AcK-IDH2,Ack-SOD2p-T263,S266,T299-PPARGC1A NRF1 SOD2 TFB2M gene TFB1Mgene:NRF1:p-PPARGC1A:NRF2CYCS geneMEF2C,D:PPARGC1ACARM1 NRF1GABPA p-T178,S539-PPARGC1A PPRC1PPARGC1B TBL1X ADPNCOA6 NRF2 beta-1 subunitATPTFAM gene CRTC2 GABPA HCFC1 POLRMTPRKAG1 NRF2 gamma-1 subunit NRF1 GABPA NRF1 NCOR1 SIRT4:Zn2+CYCS gene NRF2 beta-2 subunit PPARGC1B p-T263,S266,T299-PPARGC1Aadenosine 5'-monophosphate GLUD1 NRF2 gamma-2 subunit GABPA geneNAMZn2+ Peroxisome Proliferator Receptor Element (PPRE) PPRC1 MED1 NRF2 beta-1 subunit NRF2 beta-2 subunit NRF2 beta-1 subunit NCOA2 TFB1Mgene:NRF1:NRF2:p-PPARGC1A,PPRC1ALA ATP5BPEO1 geneNRF2 beta-2 subunit NRF1 PPARGC1A ALAS1gene:NRF1:PPARGC1BCALM1 NRF2 beta-2 subunit NRF1 RXRA NRF2 gamma-2 subunit NRF2 gamma-1 subunitNRF2 gamma-2 subunit TFAM geneSSBP1 geneACSS2 AcK-CYCSNRF2 beta-1 subunit p-T180,Y182-MAPK11 PPARGC1A gene PRKAB1 SSBP1PPARGC1BSIRT3(?-399) CRTC3 TFB2M geneSIRT5 PPARGC1A geneNRF1 NRF2 gamma-1 subunit Zn2+ TFAM gene ALAS1NRF2 gamma-2 subunit NRF1 NRF2 gamma-2 subunit 61, 759, 62, 65, 834310, 15, 19, 22, 29...482761, 7525, 35, 39, 46, 53...389, 62, 65, 83383256, 73119, 62, 65, 749, 62, 65, 74, 8362, 655256, 73325265


Description

Mitochondrial biogenesis and remodeling occur in response to exercise and redox state (reviewed in Scarpulla et al. 2012, Handy and Loscalzo 2012, Piantadosi and Suliman 2012, Scarpulla 2011, Wenz et al. 2011, Bo et al. 2010, Jornayvaz and Shulman 2010, Ljubicic et al. 2010, Hock and Kralli 2009, Canto and Auwerx 2009, Lin 2009, Scarpulla 2008, Ventura-Clapier et al. 2008). It is hypothesized that calcium influx and energy depletion are the signals that initiate changes in gene expression leading to new mitochondrial proteins. Energy depletion causes a reduction in ATP and an increase in AMP which activates AMPK. AMPK in turn phosphorylates the coactivator PGC-1alpha (PPARGC1A), one of the master regulators of mitochondrial biosynthesis. Likewise, p38 MAPK is activated by muscle contraction (possibly via calcium and CaMKII) and phosphorylates PGC-1alpha. CaMKIV responds to intracellular calcium by phosphorylating CREB, which activates expression of PGC-1alpha.
Deacetylation of PGC-1alpha by SIRT1 may also play a role in activation (Canto et al. 2009, Gurd et al. 2011), however Sirt11 deacetylation of Ppargc1a in mouse impacted genes related to glucose metabolism rather than mitochondrial biogenesis (Rodgers et al. 2005) and mice lacking SIRT1 in muscle had normal levels of mitochondrial biogenesis in response to exercise (Philp et al. 2011) so the role of deacetylation is not fully defined. PGC-1beta and PPRC appear to act similarly to PGC-1alpha but they have not been as well studied.
Phosphorylated PGC-1alpha does not bind DNA directly but instead interacts with other transcription factors, notably NRF1 and NRF2 (via HCF1). NRF1 and NRF2 together with PGC-1alpha activate the transcription of nuclear-encoded, mitochondrially targeted proteins such as TFB2M, TFB1M, and TFAM. View original pathway at:Reactome.

Comments

Reactome-Converter 
Pathway is converted from Reactome ID: 1592230
Reactome-version 
Reactome version: 66
Reactome Author 
Reactome Author: May, Bruce

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Shi H, Shigeta H, Yang N, Fu K, O'Brian G, Teng CT.; ''Human estrogen receptor-like 1 (ESRL1) gene: genomic organization, chromosomal localization, and promoter characterization.''; PubMed
  2. Ahuja N, Schwer B, Carobbio S, Waltregny D, North BJ, Castronovo V, Maechler P, Verdin E.; ''Regulation of insulin secretion by SIRT4, a mitochondrial ADP-ribosyltransferase.''; PubMed
  3. Bonnelye E, Vanacker JM, Dittmar T, Begue A, Desbiens X, Denhardt DT, Aubin JE, Laudet V, Fournier B.; ''The ERR-1 orphan receptor is a transcriptional activator expressed during bone development.''; PubMed
  4. Hock MB, Kralli A.; ''Transcriptional control of mitochondrial biogenesis and function.''; PubMed
  5. Wenz T.; ''Mitochondria and PGC-1α in Aging and Age-Associated Diseases.''; PubMed
  6. McCulloch V, Seidel-Rogol BL, Shadel GS.; ''A human mitochondrial transcription factor is related to RNA adenine methyltransferases and binds S-adenosylmethionine.''; PubMed
  7. Zheng J, Shan Y, Lambrecht RW, Donohue SE, Bonkovsky HL.; ''Differential regulation of human ALAS1 mRNA and protein levels by heme and cobalt protoporphyrin.''; PubMed
  8. Larrouy D, Vidal H, Andreelli F, Laville M, Langin D.; ''Cloning and mRNA tissue distribution of human PPARgamma coactivator-1.''; PubMed
  9. Andersson U, Scarpulla RC.; ''Pgc-1-related coactivator, a novel, serum-inducible coactivator of nuclear respiratory factor 1-dependent transcription in mammalian cells.''; PubMed
  10. Kutik S, Guiard B, Meyer HE, Wiedemann N, Pfanner N.; ''Cooperation of translocase complexes in mitochondrial protein import.''; PubMed
  11. Juge-Aubry C, Pernin A, Favez T, Burger AG, Wahli W, Meier CA, Desvergne B.; ''DNA binding properties of peroxisome proliferator-activated receptor subtypes on various natural peroxisome proliferator response elements. Importance of the 5'-flanking region.''; PubMed
  12. Pilegaard H, Saltin B, Neufer PD.; ''Exercise induces transient transcriptional activation of the PGC-1alpha gene in human skeletal muscle.''; PubMed
  13. Jornayvaz FR, Shulman GI.; ''Regulation of mitochondrial biogenesis.''; PubMed
  14. Little JP, Safdar A, Safdar A, Bishop D, Tarnopolsky MA, Gibala MJ.; ''An acute bout of high-intensity interval training increases the nuclear abundance of PGC-1α and activates mitochondrial biogenesis in human skeletal muscle.''; PubMed
  15. Bolender N, Sickmann A, Wagner R, Meisinger C, Pfanner N.; ''Multiple pathways for sorting mitochondrial precursor proteins.''; PubMed
  16. Metodiev MD, Lesko N, Park CB, Cámara Y, Shi Y, Wibom R, Hultenby K, Gustafsson CM, Larsson NG.; ''Methylation of 12S rRNA is necessary for in vivo stability of the small subunit of the mammalian mitochondrial ribosome.''; PubMed
  17. Scarpulla RC.; ''Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network.''; PubMed
  18. Cooper HM, Spelbrink JN.; ''The human SIRT3 protein deacetylase is exclusively mitochondrial.''; PubMed
  19. Sideris DP, Tokatlidis K.; ''Oxidative protein folding in the mitochondrial intermembrane space.''; PubMed
  20. Philp A, Chen A, Lan D, Meyer GA, Murphy AN, Knapp AE, Olfert IM, McCurdy CE, Marcotte GR, Hogan MC, Baar K, Schenk S.; ''Sirtuin 1 (SIRT1) deacetylase activity is not required for mitochondrial biogenesis or peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) deacetylation following endurance exercise.''; PubMed
  21. Gurd BJ, Yoshida Y, McFarlan JT, Holloway GP, Moyes CD, Heigenhauser GJ, Spriet L, Bonen A.; ''Nuclear SIRT1 activity, but not protein content, regulates mitochondrial biogenesis in rat and human skeletal muscle.''; PubMed
  22. Endo T, Yamano K.; ''Multiple pathways for mitochondrial protein traffic.''; PubMed
  23. Leyva JA, Bianchet MA, Amzel LM.; ''Understanding ATP synthesis: structure and mechanism of the F1-ATPase (Review).''; PubMed
  24. Gopalakrishnan L, Scarpulla RC.; ''Structure, expression, and chromosomal assignment of the human gene encoding nuclear respiratory factor 1.''; PubMed
  25. Zick M, Rabl R, Reichert AS.; ''Cristae formation-linking ultrastructure and function of mitochondria.''; PubMed
  26. Jiang Y, Gram H, Zhao M, New L, Gu J, Feng L, Di Padova F, Ulevitch RJ, Han J.; ''Characterization of the structure and function of the fourth member of p38 group mitogen-activated protein kinases, p38delta.''; PubMed
  27. Wu Z, Huang X, Feng Y, Handschin C, Feng Y, Gullicksen PS, Bare O, Labow M, Spiegelman B, Stevenson SC.; ''Transducer of regulated CREB-binding proteins (TORCs) induce PGC-1alpha transcription and mitochondrial biogenesis in muscle cells.''; PubMed
  28. van der Laan M, Rissler M, Rehling P.; ''Mitochondrial preprotein translocases as dynamic molecular machines.''; PubMed
  29. Milenkovic D, Müller J, Stojanovski D, Pfanner N, Chacinska A.; ''Diverse mechanisms and machineries for import of mitochondrial proteins.''; PubMed
  30. Bo H, Zhang Y, Ji LL.; ''Redefining the role of mitochondria in exercise: a dynamic remodeling.''; PubMed
  31. Handy DE, Loscalzo J.; ''Redox regulation of mitochondrial function.''; PubMed
  32. Schwer B, North BJ, Frye RA, Ott M, Verdin E.; ''The human silent information regulator (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide-dependent deacetylase.''; PubMed
  33. Bruni F, Polosa PL, Gadaleta MN, Cantatore P, Roberti M.; ''Nuclear respiratory factor 2 induces the expression of many but not all human proteins acting in mitochondrial DNA transcription and replication.''; PubMed
  34. Onyango P, Celic I, McCaffery JM, Boeke JD, Feinberg AP.; ''SIRT3, a human SIR2 homologue, is an NAD-dependent deacetylase localized to mitochondria.''; PubMed
  35. Kozjak-Pavlovic V.; ''The MICOS complex of human mitochondria.''; PubMed
  36. Cotney J, McKay SE, Shadel GS.; ''Elucidation of separate, but collaborative functions of the rRNA methyltransferase-related human mitochondrial transcription factors B1 and B2 in mitochondrial biogenesis reveals new insight into maternally inherited deafness.''; PubMed
  37. Kang Y, Fielden LF, Stojanovski D.; ''Mitochondrial protein transport in health and disease.''; PubMed
  38. Jackson MD, Denu JM.; ''Structural identification of 2'- and 3'-O-acetyl-ADP-ribose as novel metabolites derived from the Sir2 family of beta -NAD+-dependent histone/protein deacetylases.''; PubMed
  39. Glytsou C, Calvo E, Cogliati S, Mehrotra A, Anastasia I, Rigoni G, Raimondi A, Shintani N, Loureiro M, Vazquez J, Pellegrini L, Enriquez JA, Scorrano L, Soriano ME.; ''Optic Atrophy 1 Is Epistatic to the Core MICOS Component MIC60 in Mitochondrial Cristae Shape Control.''; PubMed
  40. Michishita E, Park JY, Burneskis JM, Barrett JC, Horikawa I.; ''Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins.''; PubMed
  41. Izquierdo JM.; ''Control of the ATP synthase beta subunit expression by RNA-binding proteins TIA-1, TIAR, and HuR.''; PubMed
  42. Roberts AG, Elder GH.; ''Alternative splicing and tissue-specific transcription of human and rodent ubiquitous 5-aminolevulinate synthase (ALAS1) genes.''; PubMed
  43. Julliard JH, Smith EL.; ''Partial amino acid sequence of the glutamate dehydrogenase of human liver and a revision of the sequence of the bovine enzyme.''; PubMed
  44. Scher MB, Vaquero A, Reinberg D.; ''SirT3 is a nuclear NAD+-dependent histone deacetylase that translocates to the mitochondria upon cellular stress.''; PubMed
  45. Ventura-Clapier R, Garnier A, Veksler V.; ''Transcriptional control of mitochondrial biogenesis: the central role of PGC-1alpha.''; PubMed
  46. Habersetzer J, Ziani W, Larrieu I, Stines-Chaumeil C, Giraud MF, Brèthes D, Dautant A, Paumard P.; ''ATP synthase oligomerization: from the enzyme models to the mitochondrial morphology.''; PubMed
  47. Gibala MJ, McGee SL, Garnham AP, Howlett KF, Snow RJ, Hargreaves M.; ''Brief intense interval exercise activates AMPK and p38 MAPK signaling and increases the expression of PGC-1alpha in human skeletal muscle.''; PubMed
  48. Gugneja S, Virbasius JV, Scarpulla RC.; ''Four structurally distinct, non-DNA-binding subunits of human nuclear respiratory factor 2 share a conserved transcriptional activation domain.''; PubMed
  49. Wiedemann N, Pfanner N.; ''Mitochondrial Machineries for Protein Import and Assembly.''; PubMed
  50. Schlicker C, Gertz M, Papatheodorou P, Kachholz B, Becker CF, Steegborn C.; ''Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5.''; PubMed
  51. Cantó C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, Elliott PJ, Puigserver P, Auwerx J.; ''AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity.''; PubMed
  52. Luong A, Hannah VC, Brown MS, Goldstein JL.; ''Molecular characterization of human acetyl-CoA synthetase, an enzyme regulated by sterol regulatory element-binding proteins.''; PubMed
  53. Rampelt H, Zerbes RM, van der Laan M, Pfanner N.; ''Role of the mitochondrial contact site and cristae organizing system in membrane architecture and dynamics.''; PubMed
  54. Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P.; ''Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1.''; PubMed
  55. Schwer B, Bunkenborg J, Verdin RO, Andersen JS, Verdin E.; ''Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2.''; PubMed
  56. Knutti D, Kaul A, Kralli A.; ''A tissue-specific coactivator of steroid receptors, identified in a functional genetic screen.''; PubMed
  57. Knutti D, Kressler D, Kralli A.; ''Regulation of the transcriptional coactivator PGC-1 via MAPK-sensitive interaction with a repressor.''; PubMed
  58. Stojanovski D, Müller JM, Milenkovic D, Guiard B, Pfanner N, Chacinska A.; ''The MIA system for protein import into the mitochondrial intermembrane space.''; PubMed
  59. Yamamoto H, Fukui K, Takahashi H, Kitamura S, Shiota T, Terao K, Uchida M, Esaki M, Nishikawa S, Yoshihisa T, Yamano K, Endo T.; ''Roles of Tom70 in import of presequence-containing mitochondrial proteins.''; PubMed
  60. Darshi M, Mendiola VL, Mackey MR, Murphy AN, Koller A, Perkins GA, Ellisman MH, Taylor SS.; ''ChChd3, an inner mitochondrial membrane protein, is essential for maintaining crista integrity and mitochondrial function.''; PubMed
  61. Kienhöfer J, Häussler DJ, Ruckelshausen F, Muessig E, Weber K, Pimentel D, Ullrich V, Bürkle A, Bachschmid MM.; ''Association of mitochondrial antioxidant enzymes with mitochondrial DNA as integral nucleoid constituents.''; PubMed
  62. Gleyzer N, Vercauteren K, Scarpulla RC.; ''Control of mitochondrial transcription specificity factors (TFB1M and TFB2M) by nuclear respiratory factors (NRF-1 and NRF-2) and PGC-1 family coactivators.''; PubMed
  63. van der Laan M, Hutu DP, Rehling P.; ''On the mechanism of preprotein import by the mitochondrial presequence translocase.''; PubMed
  64. Seelert H, Dencher NA.; ''ATP synthase superassemblies in animals and plants: two or more are better.''; PubMed
  65. Vercauteren K, Gleyzer N, Scarpulla RC.; ''PGC-1-related coactivator complexes with HCF-1 and NRF-2beta in mediating NRF-2(GABP)-dependent respiratory gene expression.''; PubMed
  66. Wright DC, Han DH, Garcia-Roves PM, Geiger PC, Jones TE, Holloszy JO.; ''Exercise-induced mitochondrial biogenesis begins before the increase in muscle PGC-1alpha expression.''; PubMed
  67. Piantadosi CA, Suliman HB.; ''Transcriptional control of mitochondrial biogenesis and its interface with inflammatory processes.''; PubMed
  68. Tominaga K, Hayashi J, Kagawa Y, Ohta S.; ''Smaller isoform of human mitochondrial transcription factor 1: its wide distribution and production by alternative splicing.''; PubMed
  69. Vercauteren K, Pasko RA, Gleyzer N, Marino VM, Scarpulla RC.; ''PGC-1-related coactivator: immediate early expression and characterization of a CREB/NRF-1 binding domain associated with cytochrome c promoter occupancy and respiratory growth.''; PubMed
  70. Lombard DB, Alt FW, Cheng HL, Bunkenborg J, Streeper RS, Mostoslavsky R, Kim J, Yancopoulos G, Valenzuela D, Murphy A, Yang Y, Chen Y, Hirschey MD, Bronson RT, Haigis M, Guarente LP, Farese RV, Weissman S, Verdin E, Schwer B.; ''Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation.''; PubMed
  71. Kravchenko JE, Rogozin IB, Koonin EV, Chumakov PM.; ''Transcription of mammalian messenger RNAs by a nuclear RNA polymerase of mitochondrial origin.''; PubMed
  72. Scarpulla RC, Vega RB, Kelly DP.; ''Transcriptional integration of mitochondrial biogenesis.''; PubMed
  73. Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM.; ''A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis.''; PubMed
  74. Virbasius JV, Scarpulla RC.; ''Activation of the human mitochondrial transcription factor A gene by nuclear respiratory factors: a potential regulatory link between nuclear and mitochondrial gene expression in organelle biogenesis.''; PubMed
  75. Wispé JR, Clark JC, Burhans MS, Kropp KE, Korfhagen TR, Whitsett JA.; ''Synthesis and processing of the precursor for human mangano-superoxide dismutase.''; PubMed
  76. van der Laan M, Horvath SE, Pfanner N.; ''Mitochondrial contact site and cristae organizing system.''; PubMed
  77. Ljubicic V, Joseph AM, Saleem A, Uguccioni G, Collu-Marchese M, Lai RY, Nguyen LM, Hood DA.; ''Transcriptional and post-transcriptional regulation of mitochondrial biogenesis in skeletal muscle: effects of exercise and aging.''; PubMed
  78. Blanco-Aparicio C, Torres J, Pulido R.; ''A novel regulatory mechanism of MAP kinases activation and nuclear translocation mediated by PKA and the PTP-SL tyrosine phosphatase.''; PubMed
  79. Cotney J, Shadel GS.; ''Evidence for an early gene duplication event in the evolution of the mitochondrial transcription factor B family and maintenance of rRNA methyltransferase activity in human mtTFB1 and mtTFB2.''; PubMed
  80. Cantó C, Auwerx J.; ''PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure.''; PubMed
  81. Deponte M, Hell K.; ''Disulphide bond formation in the intermembrane space of mitochondria.''; PubMed
  82. Lin JD.; ''Minireview: the PGC-1 coactivator networks: chromatin-remodeling and mitochondrial energy metabolism.''; PubMed
  83. Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC, Spiegelman BM.; ''Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1.''; PubMed
  84. Scarpulla RC.; ''Nuclear control of respiratory chain expression by nuclear respiratory factors and PGC-1-related coactivator.''; PubMed
  85. Bilbao A, Parkitna JR, Engblom D, Perreau-Lenz S, Sanchis-Segura C, Schneider M, Konopka W, Westphal M, Breen G, Desrivieres S, Klugmann M, Guindalini C, Vallada H, Laranjeira R, de Fonseca FR, Schumann G, Schütz G, Spanagel R.; ''Loss of the Ca2+/calmodulin-dependent protein kinase type IV in dopaminoceptive neurons enhances behavioral effects of cocaine.''; PubMed

History

View all...
CompareRevisionActionTimeUserComment
101311view11:20, 1 November 2018ReactomeTeamreactome version 66
100848view20:51, 31 October 2018ReactomeTeamreactome version 65
100389view19:25, 31 October 2018ReactomeTeamreactome version 64
99936view16:09, 31 October 2018ReactomeTeamreactome version 63
99492view14:43, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
93816view13:38, 16 August 2017ReactomeTeamreactome version 61
93362view11:21, 9 August 2017ReactomeTeamreactome version 61
87949view13:05, 25 July 2016RyanmillerOntology Term : 'regulatory pathway' added !
86444view09:18, 11 July 2016ReactomeTeamreactome version 56
83099view09:58, 18 November 2015ReactomeTeamVersion54
81431view12:57, 21 August 2015ReactomeTeamNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
2'-O-acetyl-ADP-riboseMetaboliteCHEBI:76279 (ChEBI)
AA MetaboliteCHEBI:15843 (ChEBI)
ACCS2,GLUD,IDH2,SOD2ComplexR-HSA-5688291 (Reactome)
ACSS2 ProteinQ9NR19 (Uniprot-TrEMBL)
ADPMetaboliteCHEBI:16761 (ChEBI)
ALA MetaboliteCHEBI:27432 (ChEBI)
ALAS1 gene:NRF1:PPARGC1BComplexR-HSA-2466384 (Reactome)
ALAS1 gene ProteinENSG00000023330 (Ensembl)
ALAS1 geneGeneProductENSG00000023330 (Ensembl)
ALAS1ProteinP13196 (Uniprot-TrEMBL)
ATP5B gene:NRF1:PPARGC1BComplexR-HSA-2466375 (Reactome)
ATP5B gene ProteinENSG00000110955 (Ensembl)
ATP5B geneGeneProductENSG00000110955 (Ensembl)
ATP5BProteinP06576 (Uniprot-TrEMBL)
ATPMetaboliteCHEBI:15422 (ChEBI)
AcK-ACSS2 ProteinQ9NR19 (Uniprot-TrEMBL)
AcK-CYCSProteinP99999 (Uniprot-TrEMBL)
AcK-GLUD R-HSA-5688301 (Reactome)
AcK-IDH2 ProteinP48735 (Uniprot-TrEMBL)
AcK-SOD2 ProteinP04179 (Uniprot-TrEMBL)
Ack-ACCS2,AcK-GLUD,AcK-IDH2,Ack-SOD2ComplexR-HSA-5688306 (Reactome)
CALM1 ProteinP0DP23 (Uniprot-TrEMBL)
CARM1 ProteinQ86X55 (Uniprot-TrEMBL)
CHD9 ProteinQ3L8U1 (Uniprot-TrEMBL)
CREB1ProteinP16220 (Uniprot-TrEMBL)
CREBBP ProteinQ92793 (Uniprot-TrEMBL)
CRTC1 ProteinQ6UUV9 (Uniprot-TrEMBL)
CRTC2 ProteinQ53ET0 (Uniprot-TrEMBL)
CRTC3 ProteinQ6UUV7 (Uniprot-TrEMBL)
CYCS gene:NRF1:PPARGC1BComplexR-HSA-2466382 (Reactome)
CYCS gene ProteinENSG00000172115 (Ensembl)
CYCS geneGeneProductENSG00000172115 (Ensembl)
CYCSProteinP99999 (Uniprot-TrEMBL)
Ca2+ MetaboliteCHEBI:29108 (ChEBI)
Cristae formationPathwayR-HSA-8949613 (Reactome) Cristae are invaginations of the inner mitochondrial membrane that extend into the matrix and are lined with cytochrome complexes and F1Fo ATP synthase complexes. Cristae increase the surface area of the inner membranes allowing greater numbers of respiratory complexes. Cristae are also believed to serve as "proton pockets" to generate localized regions of higher membrane potential. The steps in the biogenesis of cristae are not yet completely elucidated (reviewed in Zick et al. 2009) but the formation of the Mitochondrial Contact Site and Cristae Organizing System (MICOS, formerly also known as MINOS, reviewed in Rampelt et al. 2016, Kozjak-Pavlovic 2016, van der Laan et al. 2016) and localized concentrations of cardiolipin are known to define the inward curvature of the inner membrane at the bases of cristae. MICOS also links these regions of the inner membrane with complexes (the SAM complex and, in fungi, the TOM complex) embedded in the outer membrane. CHCHD3 (MIC19) and IMMT (MIC60) subunits of MICOS also interact with OPA1 at the inner membrane (Darshi et al. 2011, Glytsou et al. 2016).
Formation of dimers or oligomers of the F1Fo ATP synthase complex causes extreme curvature of the inner membrane at the apices of cristae (reviewed in Seelert and Dencher 2011, Habersetzer et al. 2013). Defects in either MICOS or F1Fo ATP synthase oligomerization produce abnormal mitochondrial morphologies.
EPA MetaboliteCHEBI:28364 (ChEBI)
ESRRA geneGeneProductENSG00000173153 (Ensembl)
ESRRAProteinP11474 (Uniprot-TrEMBL)
GABPA ProteinQ06546 (Uniprot-TrEMBL)
GABPA geneGeneProductENSG00000154727 (Ensembl)
GABPAProteinQ06546 (Uniprot-TrEMBL)
GLUD R-HSA-5687782 (Reactome)
GLUD1 ProteinP00367 (Uniprot-TrEMBL)
GLUD2 ProteinP49448 (Uniprot-TrEMBL)
GLUDComplexR-HSA-5687782 (Reactome)
HCFC1 ProteinP51610 (Uniprot-TrEMBL)
HCFC1ProteinP51610 (Uniprot-TrEMBL)
HDAC3 ProteinO15379 (Uniprot-TrEMBL)
HELZ2 ProteinQ9BYK8 (Uniprot-TrEMBL)
IDH2 ProteinP48735 (Uniprot-TrEMBL)
LINA MetaboliteCHEBI:17351 (ChEBI)
MAPK12 ProteinP53778 (Uniprot-TrEMBL)
MED1 ProteinQ15648 (Uniprot-TrEMBL) MED1 is a component of each of the various Mediator complexes, that function as transcription co-activators. The MED1-containing compolexes include the DRIP, ARC, TRIP and CRSP compllexes.
MEF2C ProteinQ06413 (Uniprot-TrEMBL)
MEF2C,D:PPARGC1AComplexR-HSA-1605560 (Reactome)
MEF2D ProteinQ14814 (Uniprot-TrEMBL)
MTERF geneGeneProductENSG00000127989 (Ensembl)
MTERFProteinQ99551 (Uniprot-TrEMBL)
Mitochondrial protein importPathwayR-HSA-1268020 (Reactome) A human mitochondrion contains about 1500 proteins, more than 99% of which are encoded in the nucleus, synthesized in the cytosol and imported into the mitochondrion. Proteins are targeted to four locations (outer membrane, intermembrane space, inner membrane, and matrix) and must be sorted accordingly (reviewed in Kutik et al. 2007, Milenkovic et al. 2007, Bolender et al. 2008, Endo and Yamano 2009, Wiedemann and Pfanner 2017, Kang et al. 2018). Newly synthesized proteins are transported from the cytosol across the outer membrane by the TOMM40:TOMM70 complex. Proteins that contain presequences first interact with the TOMM20 subunit of the complex while proteins that contain internal targeting elements first interact with the TOMM70 subunit. After initial interaction the protein is conducted across the outer membrane by TOMM40 subunits. In yeast some proteins such as Aco1, Atp1, Cit1, Idh1, and Atp2 have both presequences that interact with TOM20 and mature regions that interact with TOM70 (Yamamoto et al. 2009).
After passage across the outer membrane, proteins may be targeted to the outer membrane via the SAMM50 complex, to the inner membrane via the TIMM22 or TIMM23 complexes (reviewed in van der Laan et al. 2010), to the matrix via the TIMM23 complex (reviewed in van der Laan et al. 2010), or proteins may fold and remain in the intermembrane space (reviewed in Stojanovski et al. 2008, Deponte and Hell 2009, Sideris and Tokatlidis 2010). Presequences on matrix and inner membrane proteins cause interaction with TIMM23 complexes; internal targeting sequences cause outer membrane proteins to interact with the SAMM50 complex and inner membrane proteins to interact with the TIMM22 complex. While in the intermembrane space hydrophobic proteins are chaperoned by the TIMM8:TIMM13 complex and/or the TIMM9:TIMM10:FXC1 complex.
NAD+MetaboliteCHEBI:15846 (ChEBI)
NAMMetaboliteCHEBI:17154 (ChEBI)
NCOA1 ProteinQ15788 (Uniprot-TrEMBL)
NCOA2 ProteinQ15596 (Uniprot-TrEMBL)
NCOA6 ProteinQ14686 (Uniprot-TrEMBL)
NCOR1 ProteinO75376 (Uniprot-TrEMBL)
NR1D1 ProteinP20393 (Uniprot-TrEMBL)
NR1D1:heme:Corepressors:PPARGC1A geneComplexR-HSA-5663272 (Reactome)
NRF1 ProteinQ16656 (Uniprot-TrEMBL)
NRF1 geneGeneProductENSG00000106459 (Ensembl)
NRF1ProteinQ16656 (Uniprot-TrEMBL)
NRF2 beta-1 subunit ProteinQ06547-1 (Uniprot-TrEMBL)
NRF2 beta-1 subunitProteinQ06547-1 (Uniprot-TrEMBL)
NRF2 beta-2 subunit ProteinQ06547-2 (Uniprot-TrEMBL)
NRF2 beta-2 subunitProteinQ06547-2 (Uniprot-TrEMBL)
NRF2 gamma-1 subunit ProteinQ06547-3 (Uniprot-TrEMBL)
NRF2 gamma-1 subunitProteinQ06547-3 (Uniprot-TrEMBL)
NRF2 gamma-2 subunit ProteinQ06547-4 (Uniprot-TrEMBL)
NRF2 gamma-2 subunitProteinQ06547-4 (Uniprot-TrEMBL)
NRF2ComplexR-HSA-1592226 (Reactome)
PEO1 geneGeneProductENSG00000107815 (Ensembl)
PEO1ProteinQ96RR1 (Uniprot-TrEMBL)
PERM1 geneGeneProductENSG00000187642 (Ensembl)
PERM1ProteinQ5SV97 (Uniprot-TrEMBL)
POLG2 geneGeneProductENSG00000256525 (Ensembl)
POLG2(?-485)ProteinQ9UHN1 (Uniprot-TrEMBL)
POLRMT geneGeneProductENSG00000099821 (Ensembl)
POLRMTProteinO00411 (Uniprot-TrEMBL)
PPARA ProteinQ07869 (Uniprot-TrEMBL)
PPARA:RXRA Coactivator complexComplexR-HSA-400154 (Reactome)
PPARGC1A ProteinQ9UBK2 (Uniprot-TrEMBL)
PPARGC1A gene ProteinENSG00000109189 (Ensembl)
PPARGC1A geneGeneProductENSG00000109189 (Ensembl)
PPARGC1AProteinQ9UBK2 (Uniprot-TrEMBL)
PPARGC1B ProteinQ86YN6 (Uniprot-TrEMBL)
PPARGC1BProteinQ86YN6 (Uniprot-TrEMBL)
PPRC1 ProteinQ5VV67 (Uniprot-TrEMBL)
PPRC1ProteinQ5VV67 (Uniprot-TrEMBL)
PRKAB1 ProteinQ9Y478 (Uniprot-TrEMBL)
PRKAB2 ProteinO43741 (Uniprot-TrEMBL)
PRKAG1 ProteinP54619 (Uniprot-TrEMBL)
PRKAG2 ProteinQ9UGJ0 (Uniprot-TrEMBL)
PRKAG3 ProteinQ9UGI9 (Uniprot-TrEMBL)
Palm MetaboliteCHEBI:15756 (ChEBI)
Peroxisome Proliferator Receptor Element (PPRE) R-ALL-422139 (Reactome) Peroxisome proliferator receptor elements bind heterodimers containing a peroxisome proliferator receptor and a retinoic acid receptor. The consensus sequence is TGAMCTTTGNCCTAGWTYYG.
RXRA ProteinP19793 (Uniprot-TrEMBL)
RibC-GLUD1 ProteinP00367 (Uniprot-TrEMBL)
RibC-GLUD2 ProteinP49448 (Uniprot-TrEMBL)
RibC-GLUDComplexR-HSA-5688267 (Reactome)
SIRT3 geneGeneProductENSG00000142082 (Ensembl)
SIRT3(?-399) ProteinQ9NTG7 (Uniprot-TrEMBL)
SIRT3(?-399):Zn2+ComplexR-HSA-5688322 (Reactome)
SIRT3(?-399)ProteinQ9NTG7 (Uniprot-TrEMBL)
SIRT4 ProteinQ9Y6E7 (Uniprot-TrEMBL)
SIRT4:Zn2+ComplexR-HSA-5688269 (Reactome)
SIRT5 ProteinQ9NXA8 (Uniprot-TrEMBL)
SIRT5:Zn2+ComplexR-HSA-5688288 (Reactome)
SMARCD3 ProteinQ6STE5 (Uniprot-TrEMBL)
SOD2 ProteinP04179 (Uniprot-TrEMBL)
SSBP1 geneGeneProductENSG00000106028 (Ensembl)
SSBP1ProteinQ04837 (Uniprot-TrEMBL)
TBL1X ProteinO60907 (Uniprot-TrEMBL)
TBL1XR1 ProteinQ9BZK7 (Uniprot-TrEMBL)
TFAM gene:NRF1:NRF2:PPRC1ComplexR-HSA-1592221 (Reactome)
TFAM gene:NRF1:NRF2:p-PPARGC1A,PPRC1ComplexR-HSA-2466363 (Reactome)
TFAM gene:NRF1:p-PPARGC1A:NRF2ComplexR-HSA-2466379 (Reactome)
TFAM gene ProteinENSG00000108064 (Ensembl)
TFAM geneGeneProductENSG00000108064 (Ensembl)
TFAM(1-246)ProteinQ00059 (Uniprot-TrEMBL)
TFAMProteinQ00059 (Uniprot-TrEMBL)
TFB1M gene:NRF1:NRF2:HCFC1:PPRC1ComplexR-HSA-2466381 (Reactome)
TFB1M gene:NRF1:NRF2:p-PPARGC1A,PPRC1ComplexR-HSA-2466390 (Reactome)
TFB1M gene:NRF1:p-PPARGC1A:NRF2ComplexR-HSA-2466393 (Reactome)
TFB1M gene ProteinENSG00000029639 (Ensembl)
TFB1M geneGeneProductENSG00000029639 (Ensembl)
TFB1MProteinQ8WVM0 (Uniprot-TrEMBL)
TFB2M gene:NRF1:NRF2:HCFC1:PPRC1ComplexR-HSA-2466365 (Reactome)
TFB2M gene:NRF1:NRF2:p-PPARGC1A,PPRC1ComplexR-HSA-2466378 (Reactome)
TFB2M gene:NRF1:p-PPARGC1A:NRF2ComplexR-HSA-2466376 (Reactome)
TFB2M gene ProteinENSG00000162851 (Ensembl)
TFB2M geneGeneProductENSG00000162851 (Ensembl)
TFB2MProteinQ9H5Q4 (Uniprot-TrEMBL)
TGS1 ProteinQ96RS0 (Uniprot-TrEMBL)
Zn2+ MetaboliteCHEBI:29105 (ChEBI)
adenosine 5'-monophosphate MetaboliteCHEBI:16027 (ChEBI)
ferriheme b MetaboliteCHEBI:36144 (ChEBI)
p-AMPK heterotrimer:AMPComplexR-HSA-2151198 (Reactome)
p-PPARGC1AComplexR-HSA-1592227 (Reactome)
p-S12,S13-CAMK4 ProteinQ16566 (Uniprot-TrEMBL)
p-S133-CREB1 ProteinP16220 (Uniprot-TrEMBL)
p-S133-CREB1ProteinP16220 (Uniprot-TrEMBL)
p-S133-CREB:CRTC1,2,3:PPARGC1A geneComplexR-HSA-8931947 (Reactome)
p-T172-PRKAA2 ProteinP54646 (Uniprot-TrEMBL)
p-T178,S539-PPARGC1A ProteinQ9UBK2 (Uniprot-TrEMBL)
p-T178,S539-PPARGC1AProteinQ9UBK2 (Uniprot-TrEMBL)
p-T180,Y182-MAPK11 ProteinQ15759 (Uniprot-TrEMBL)
p-T180,Y182-MAPK14 ProteinQ16539 (Uniprot-TrEMBL)
p-T263,S266,T299-PPARGC1A ProteinQ9UBK2 (Uniprot-TrEMBL)
p-T263,S266,T299-PPARGC1AProteinQ9UBK2 (Uniprot-TrEMBL)
p-T69,T71-ATF2ProteinP15336 (Uniprot-TrEMBL)
phospho-CaMK IV:CalmodulinComplexR-HSA-111904 (Reactome)
phospho-p38

alpha/beta/gamma

MAPK
ComplexR-HSA-448858 (Reactome)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
2'-O-acetyl-ADP-riboseArrowR-HSA-5688289 (Reactome)
2'-O-acetyl-ADP-riboseArrowR-HSA-5688294 (Reactome)
ACCS2,GLUD,IDH2,SOD2ArrowR-HSA-5688289 (Reactome)
ADPArrowR-HSA-111912 (Reactome)
ADPArrowR-HSA-1592233 (Reactome)
ADPArrowR-HSA-1592244 (Reactome)
ALAS1 gene:NRF1:PPARGC1BArrowR-HSA-1592238 (Reactome)
ALAS1 gene:NRF1:PPARGC1BArrowR-HSA-1592245 (Reactome)
ALAS1 geneR-HSA-1592238 (Reactome)
ALAS1 geneR-HSA-1592245 (Reactome)
ALAS1ArrowR-HSA-1592238 (Reactome)
ATP5B gene:NRF1:PPARGC1BArrowR-HSA-1592247 (Reactome)
ATP5B gene:NRF1:PPARGC1BArrowR-HSA-2466369 (Reactome)
ATP5B geneR-HSA-1592247 (Reactome)
ATP5B geneR-HSA-2466369 (Reactome)
ATP5BArrowR-HSA-1592247 (Reactome)
ATPR-HSA-111912 (Reactome)
ATPR-HSA-1592233 (Reactome)
ATPR-HSA-1592244 (Reactome)
AcK-CYCSR-HSA-5688294 (Reactome)
Ack-ACCS2,AcK-GLUD,AcK-IDH2,Ack-SOD2R-HSA-5688289 (Reactome)
CREB1R-HSA-111912 (Reactome)
CYCS gene:NRF1:PPARGC1BArrowR-HSA-1592231 (Reactome)
CYCS gene:NRF1:PPARGC1BArrowR-HSA-2466370 (Reactome)
CYCS geneR-HSA-1592231 (Reactome)
CYCS geneR-HSA-2466370 (Reactome)
CYCSArrowR-HSA-1592231 (Reactome)
CYCSArrowR-HSA-5688294 (Reactome)
ESRRA geneR-HSA-1605428 (Reactome)
ESRRAArrowR-HSA-1592231 (Reactome)
ESRRAArrowR-HSA-1592238 (Reactome)
ESRRAArrowR-HSA-1592247 (Reactome)
ESRRAArrowR-HSA-1605428 (Reactome)
ESRRAArrowR-HSA-8940309 (Reactome)
GABPA geneR-HSA-1592234 (Reactome)
GABPAArrowR-HSA-1592234 (Reactome)
GABPAR-HSA-1592240 (Reactome)
GLUDR-HSA-5688276 (Reactome)
HCFC1R-HSA-1592250 (Reactome)
HCFC1R-HSA-2466367 (Reactome)
MEF2C,D:PPARGC1AArrowR-HSA-1368140 (Reactome)
MTERF geneR-HSA-1592251 (Reactome)
MTERFArrowR-HSA-1592251 (Reactome)
NAD+R-HSA-5688276 (Reactome)
NAD+R-HSA-5688289 (Reactome)
NAD+R-HSA-5688294 (Reactome)
NAMArrowR-HSA-5688276 (Reactome)
NAMArrowR-HSA-5688289 (Reactome)
NAMArrowR-HSA-5688294 (Reactome)
NR1D1:heme:Corepressors:PPARGC1A geneTBarR-HSA-1368140 (Reactome)
NRF1 geneR-HSA-1592242 (Reactome)
NRF1ArrowR-HSA-1592242 (Reactome)
NRF1R-HSA-1592236 (Reactome)
NRF1R-HSA-1592245 (Reactome)
NRF1R-HSA-1592249 (Reactome)
NRF1R-HSA-1592250 (Reactome)
NRF1R-HSA-2466367 (Reactome)
NRF1R-HSA-2466369 (Reactome)
NRF1R-HSA-2466370 (Reactome)
NRF1R-HSA-2466391 (Reactome)
NRF1R-HSA-2466392 (Reactome)
NRF2 beta-1 subunitR-HSA-1592240 (Reactome)
NRF2 beta-2 subunitR-HSA-1592240 (Reactome)
NRF2 gamma-1 subunitR-HSA-1592240 (Reactome)
NRF2 gamma-2 subunitR-HSA-1592240 (Reactome)
NRF2ArrowR-HSA-1592234 (Reactome)
NRF2ArrowR-HSA-1592235 (Reactome)
NRF2ArrowR-HSA-1592239 (Reactome)
NRF2ArrowR-HSA-1592240 (Reactome)
NRF2ArrowR-HSA-1592241 (Reactome)
NRF2ArrowR-HSA-1592243 (Reactome)
NRF2ArrowR-HSA-1592251 (Reactome)
NRF2R-HSA-1592236 (Reactome)
NRF2R-HSA-1592249 (Reactome)
NRF2R-HSA-1592250 (Reactome)
NRF2R-HSA-2466367 (Reactome)
NRF2R-HSA-2466391 (Reactome)
NRF2R-HSA-2466392 (Reactome)
PEO1 geneR-HSA-1592239 (Reactome)
PEO1ArrowR-HSA-1592239 (Reactome)
PERM1 geneR-HSA-8940309 (Reactome)
PERM1ArrowR-HSA-8940309 (Reactome)
POLG2 geneR-HSA-1592235 (Reactome)
POLG2(?-485)ArrowR-HSA-1592235 (Reactome)
POLRMT geneR-HSA-1592243 (Reactome)
POLRMTArrowR-HSA-1592243 (Reactome)
PPARA:RXRA Coactivator complexArrowR-HSA-1592238 (Reactome)
PPARGC1A geneR-HSA-1368140 (Reactome)
PPARGC1AArrowR-HSA-1368140 (Reactome)
PPARGC1AR-HSA-1592233 (Reactome)
PPARGC1AR-HSA-1592244 (Reactome)
PPARGC1BR-HSA-1592245 (Reactome)
PPARGC1BR-HSA-2466369 (Reactome)
PPARGC1BR-HSA-2466370 (Reactome)
PPRC1R-HSA-1592249 (Reactome)
PPRC1R-HSA-1592250 (Reactome)
PPRC1R-HSA-2466367 (Reactome)
R-HSA-111912 (Reactome) The cAMP-responsive element binding protein (CREB), a key regulator of gene expression, is activated by phosphorylation on Ser-133. Several different protein kinases possess the capability of driving this phosphorylation, making it a point of potential convergence for multiple intracellular signaling cascades. Work in neurons has indicated that physiologic synaptic stimulation recruits a fast calmodulin kinase IV (CaMKIV)-dependent pathway that dominates early signaling to CREB. Activated CaMKIV phosphorylates CREB at S133 thereby initiating the transcription of CREB regulated set of genes leading to protein synthesis and long lasting changes that underlie synaptic plasticity.
R-HSA-1368140 (Reactome) The PPARGC1A (PGC-1alpha) gene is transcribed to yield mRNA and the mRNA is translated to yield protein. PPARGC1A protein is located in the nucleus where it coactivates transcription.
R-HSA-1592229 (Reactome) TFAM is encoded in the nucleus, synthesized as a precursor in the cytosol, and imported into the mitochondrial matrix (presumably by the SAM50 complex and the TIM23:PAM complex, reviewed in van der Laan et al. 2006). In the mitochondrial matrix TFAM binds the light strand promoter of mitochondrial DNA and regulates transcription.
R-HSA-1592231 (Reactome) The gene encoding cytochrome c (CYCS) is transcribed in the nucleus to yield mRNA and the mRNA is translated in the cytosol to yield the precursor of cytochrome c, which is then imported into the mitochodrial matrix and associates with the matrix face of the inner membrane.
R-HSA-1592232 (Reactome) The TFB1M gene is transcribed to yield mRNA and the mRNA is translated to yield precursor protein in the cytosol (McCulloch et al. 2002, Gleyzer et al. 2005, Vercauteren et al. 2008, Cotney et al. 2009). The TFB1M precursor is then imported into the mitochondiral matrix where it acts as both a 12S RNA methylase and a DNA-binding transcription factor (inferred from mouse in Metodiev et al. 2009).
R-HSA-1592233 (Reactome) As inferred from mouse, p38 MAPK phosphorylates PGC-1alpha (PPARGC1A). Because p38 MAPK is responsive to intracellular calcium, this reaction may couple exercise to mitochondrial biogenesis.
Phosphorylated p38 MAPK is found in the nucleus (Chan et al. 2004, http://www.cellsignal.com/products/4511.html, inferred from mouse in Blanco-Aparicio et al. 1999). p38 MAPK alpha, beta, and gamma (but not delta) are found in skeletal muscle (Jiang et al. 1997). PPARGC1A (PGC-1alpha) is predominantly nuclear (Knutti et al. 2001). As inferred from rat, PPARGC1A may translocate from the cytosol to the nucleus during activation (Wright et al. 2007).
R-HSA-1592234 (Reactome) The GABPA (NRF2 alpha subunit) gene is transcribed to yield mRNA and the mRNA is translated to yield protein. Two subunits of GABPA bind two subunits of GABPB1 to form Nuclear respiratory factor 2 (NRF2).
R-HSA-1592235 (Reactome) The POLG2 gene is transcribed to yield mRNA and the mRNA is translated in the cytosol to yield precursor protein.POLG2 is imported into the mitochondrial matrix where it functions in DNA replication.
R-HSA-1592236 (Reactome) PGC-1alpha (PPARGC1A) binds NRF1 and coactivates genes regulated by NRF1 (Gleyzer et al. 2005, Vercauteren et al. 2008, inferred from mouse in Wu et al. 1999).
R-HSA-1592238 (Reactome) The ALAS1 gene is transcribed to yield mRNA and the mRNA is translated in the cytosol to yield precursor protein. The ALAS1 precursor is imported into the mitochodrial matrix where it catalyzes the synthesis of 5-aminolevulinate from glycine and succinyl-CoA as part of heme biosynthesis.
R-HSA-1592239 (Reactome) The PEO1 (TWINKLE) gene is transcribed to yield mRNA and the mRNA is translated in the cytosol to yield precursor protein. PEO1 is imported into the mitochondrial matrix where it may play a role in DNA replication.
R-HSA-1592240 (Reactome) Five subunits (alpha, beta-1, beta-2, gamma-1, gamma-2) assemble to form the DNA-binding transcription factor NRF2 (Gugneja et al. 1995).
R-HSA-1592241 (Reactome) The SSBP1 (mtSSB) gene is transcribed in the nucleus to yield mRNA and the mRNA is translated in the cytosol to yield precursor protein. The precursor SSBP1 is imported into the mitochondiral matrix where it binds single-stranded DNA.
R-HSA-1592242 (Reactome) The NRF1 gene is transcribed to yield mRNA and the mRNA is translated to yield protein. NRF1 protein is located in the nucleus where it regulates transcription.
R-HSA-1592243 (Reactome) The POLRMT (mitochondrial RNA polymerase) gene is transcribed in the nucleus to yield mRNA and the mRNA is translated in the cytosol to yield POLRMT precursor, which is then imported into the mitochondria matrix. In the mitochondrial matrix POLRMT transcribes mitochondrial DNA.
R-HSA-1592244 (Reactome) As inferred from mouse, AMPK is activated by AMP and phosphorylates PGC-1alpha (PPARGC1A). It is hypothesized that this reaction connects energy depletion (low ATP, high AMP) to mitochondrial biogenesis (activation of PGC-1alpha).
R-HSA-1592245 (Reactome) As inferred from mouse, PGC-1beta (PPARGC1B) binds NRF1 and coactivates genes regulated by NRF1.
R-HSA-1592246 (Reactome) The TFAM gene is transcribed in the nucleus to yield mRNA and the mRNA is translated to yield precursor protein in the cytosol.
R-HSA-1592247 (Reactome) The ATP5B (ATP synthase beta subunit) gene is transcribed in the nucleus to yield mRNA and the mRNA is translated in the cytosol to yield the ATP5B precursor, which is then imported into the mitochondrial matrix. ATP5B is a peripheral membrane protein located at the matrix face of the inner membrane within the ATP synthase complex (reviewed in Leyva et al. 2003).
R-HSA-1592249 (Reactome) PRC (PPRC1) binds NRF1 and coactivates genes regulated by NRF1 (Andersson and Scarpulla 2001, Vercauteren et al. 2008).
R-HSA-1592250 (Reactome) Both PRC (PPRC1) and NRF2 bind HCF1 (Vercauteren et al. 2008). PRC, like PGC-1alpha, can coactivate NRF2 (Gleyzer et al. 2005).
R-HSA-1592251 (Reactome) The mTERF gene is transcribed in the nucleus to yield mRNA and the mRNA is translated in the cytosol to yield precursor protein. mTERF is imported into the mitochondrial matrix where it plays a role in terminating transcription.
R-HSA-1592252 (Reactome) The TFB2M gene is transcribed to yield mRNA and the mRNA is translated to yield protein. The TFB2M precursor is then imported into the mitochondiral matrix where it acts as both a 12S RNA methylase and a DNA-binding transcription factor (Gleyzer et al. 2005, Cotney and Shadel 2006, Vercauteren et al. 2008).
R-HSA-1605428 (Reactome) The ERR1 (ERRalpha) gene is transcribed to yield mRNA and the mRNA is translated to yield protein. ERR1 is a nuclear receptor that interacts with PPARGC1A (PGC-1alpha) and regulates energy metabolism.
R-HSA-1605535 (Reactome) The SIRT3 gene is transcribed to yield mRNA and the mRNA is translated in the cytosol to yield precursor protein. SIRT3 is imported into the mitochondrial matrix where it deacetylates, and hence activates, target proteins
R-HSA-2466367 (Reactome) Both PRC (PPRC1) and NRF2 bind HCF1 (Vercauteren et al. 2008). PRC, like PGC-1alpha, can coactivate NRF2 (Gleyzer et al. 2005).
R-HSA-2466369 (Reactome) As inferred from mouse, PGC-1beta (PPARGC1B) binds NRF1 and coactivates genes regulated by NRF1.
R-HSA-2466370 (Reactome) As inferred from mouse, PGC-1beta (PPARGC1B) binds NRF1 and coactivates genes regulated by NRF1.
R-HSA-2466391 (Reactome) PRC (PPRC1) binds NRF1 and coactivates genes regulated by NRF1 (Andersson and Scarpulla 2001, Vercauteren et al. 2008).
R-HSA-2466392 (Reactome) PGC-1alpha (PPARGC1A) binds NRF1 and coactivates genes regulated by NRF1 (Gleyzer et al. 2005, Vercauteren et al. 2008, inferred from mouse in Wu et al. 1999).
R-HSA-5688276 (Reactome) Sirtuin 4 (SIRT4) is a mitochondrial ADP-ribosyltransferase and deacetylase. It uses NAD+ to ADP-ribosylate glutamate dehydrogenase (GLUD), reducing its enzyme activity by at least 50%, leading to reduced insulin secretion in pancreatic beta cells (Haigis et al. 2006, Ahuja et al. 2007).
R-HSA-5688289 (Reactome) Sirtuin 3 (SIRT3) is the most extensively studied of the mitochondrial sirtuins. It deacetylates and thereby activates Acetyl-CoA synthetase 2 (ACCS2), Glutamate dehydrogenase (GLUD), Isocitrate dehydrogenase 2 (IDH2) and Superoxide dismutase 2 (SOD2) (Schwer et al. 2006, Lombard et al. 2007, Schlicker et al. 2008, Tao et al. 2010).
R-HSA-5688294 (Reactome) Sirtuin 5 has been shown to deacetylate Cytochrome C in the the mitochondrial intermembrane space (Schlicker et al. 2008). The functional significance of this is unknown (Bao & Sack 2010).
R-HSA-8940309 (Reactome) As inferred from the mouse homolog, the PERM1 gene is transcribed to yield mRNA, the mRNA is translated to yield protein. The PERM1 gene is expressed selectively in muscle where it is activated by PPARGC1A via the estrogen receptor ESRRA, which binds regulatory regions of the PERM1 gene. PERM1 selectively regulates mitochondrial biogenesis and oxidative function.
RibC-GLUDArrowR-HSA-5688276 (Reactome)
SIRT3 geneR-HSA-1605535 (Reactome)
SIRT3(?-399):Zn2+mim-catalysisR-HSA-5688289 (Reactome)
SIRT3(?-399)ArrowR-HSA-1605535 (Reactome)
SIRT4:Zn2+mim-catalysisR-HSA-5688276 (Reactome)
SIRT5:Zn2+mim-catalysisR-HSA-5688294 (Reactome)
SSBP1 geneR-HSA-1592241 (Reactome)
SSBP1ArrowR-HSA-1592241 (Reactome)
TFAM gene:NRF1:NRF2:PPRC1ArrowR-HSA-1592249 (Reactome)
TFAM gene:NRF1:NRF2:p-PPARGC1A,PPRC1ArrowR-HSA-1592246 (Reactome)
TFAM gene:NRF1:p-PPARGC1A:NRF2ArrowR-HSA-2466391 (Reactome)
TFAM geneR-HSA-1592246 (Reactome)
TFAM geneR-HSA-1592249 (Reactome)
TFAM geneR-HSA-2466391 (Reactome)
TFAM(1-246)ArrowR-HSA-1592246 (Reactome)
TFAM(1-246)R-HSA-1592229 (Reactome)
TFAMArrowR-HSA-1592229 (Reactome)
TFB1M gene:NRF1:NRF2:HCFC1:PPRC1ArrowR-HSA-1592250 (Reactome)
TFB1M gene:NRF1:NRF2:p-PPARGC1A,PPRC1ArrowR-HSA-1592232 (Reactome)
TFB1M gene:NRF1:p-PPARGC1A:NRF2ArrowR-HSA-1592236 (Reactome)
TFB1M geneR-HSA-1592232 (Reactome)
TFB1M geneR-HSA-1592236 (Reactome)
TFB1M geneR-HSA-1592250 (Reactome)
TFB1MArrowR-HSA-1592232 (Reactome)
TFB2M gene:NRF1:NRF2:HCFC1:PPRC1ArrowR-HSA-2466367 (Reactome)
TFB2M gene:NRF1:NRF2:p-PPARGC1A,PPRC1ArrowR-HSA-1592252 (Reactome)
TFB2M gene:NRF1:p-PPARGC1A:NRF2ArrowR-HSA-2466392 (Reactome)
TFB2M geneR-HSA-1592252 (Reactome)
TFB2M geneR-HSA-2466367 (Reactome)
TFB2M geneR-HSA-2466392 (Reactome)
TFB2MArrowR-HSA-1592252 (Reactome)
p-AMPK heterotrimer:AMPmim-catalysisR-HSA-1592244 (Reactome)
p-PPARGC1AArrowR-HSA-1368140 (Reactome)
p-PPARGC1AArrowR-HSA-1592234 (Reactome)
p-PPARGC1AArrowR-HSA-1592242 (Reactome)
p-PPARGC1AArrowR-HSA-1605428 (Reactome)
p-PPARGC1AArrowR-HSA-1605535 (Reactome)
p-PPARGC1AR-HSA-1592236 (Reactome)
p-PPARGC1AR-HSA-2466391 (Reactome)
p-PPARGC1AR-HSA-2466392 (Reactome)
p-S133-CREB1ArrowR-HSA-111912 (Reactome)
p-S133-CREB:CRTC1,2,3:PPARGC1A geneArrowR-HSA-1368140 (Reactome)
p-T178,S539-PPARGC1AArrowR-HSA-1592244 (Reactome)
p-T263,S266,T299-PPARGC1AArrowR-HSA-1592233 (Reactome)
p-T69,T71-ATF2ArrowR-HSA-1368140 (Reactome)
phospho-CaMK IV:Calmodulinmim-catalysisR-HSA-111912 (Reactome)
phospho-p38

alpha/beta/gamma

MAPK
mim-catalysisR-HSA-1592233 (Reactome)
Personal tools