Spinal Cord Injury (Bos taurus)

From WikiPathways

Revision as of 08:55, 25 July 2016 by Lindarieswijk (Talk | contribs)
Jump to: navigation, search
2722CSPG4OBNOFECHP1PLXNA2LTB4NGFRTNFSF13PDYNLTBCD47LTB4RLGALS3AQP1C1QBAPEX1AIF1CDC42TNFSF13BPTPRZ1MIF3244330531819433842443147Motor NeuronOligodendrocyteAstroctyeSpinal Cord InjuryTimePro-InflammatoryFactorsZFP36FCGR2CPRB1PTPRAIL1BZFP36INOSTNFNR4A128IL4BTG2BTG2FBRCDK2NOS1IL2TNFIL6TLR4FOSIL1BTGFB1TLR4TNFEGR1FOSMMP12IFNGGlial ScarAstrocyte GliosisSwelling/EdemaMBPAntigens ReleasedRTN4C5GRO1Neutrophil Chemoattractants37, 40CXCL8NeurtrophilsMonocytesAQP410TTLegendTT:Therapeutic Target (increase)TTTTTT:Therapeutic Target (decrease)T-CellsB-CellsB Cell Stimulating2Activated Microglia/Macrophages(Transient)RepairIL1BINOSTNFARG1TOXIC FERROUSIRONFocal Adensions45, 51EPHA4TTEFNB2TTTTTTTTCXCL10Neuro protectionAntibody ReleaseNeuronalInjuryResponseAstrocyteInjuryResponseG1-S Cell Cycle Re-entry (TT)50CCNG1MicrogliaMicrogliaActivationAxonal RetractionRecruitmentRecruitmentMMP917TTChondroitin Sulfate Proteoglycans14NCANSLIT1Axon Retraction14SLIT2SLIT3NTN1RGMATTTTTTTTTTMMP917MMP917MMP917TTTTTTCCR2IL1R137TTECM BreakdownECM BreakdownIL1AGRO1Monocyte ChemoattractantsGRO137, 40CCL2OligodendrocyteInjury ResponsePLA2G6PLA2G5PLA2G2AmelittinInflammationDemyelinationANXA1TT9TTTTTTRed Blood CellsMyelinEndothelial LeukocyteAdehsion Factors20ICAM1SELPTTTTPlasticityKLK823TTMicrogliaActivated Microglia/MacrophagesActivated Microglia/MacrophagesGFAP17TTIntermediateFillament26CDK4NK1RE2F5RB1PRKCAE2F1MAPK1CCND1MYCGADD45AMAPK3TTTTTTAstroctyeNeuron & OligodendrocyteApoptosis/NecrosisMicrogliaProliferationTP53CytotoxicCytotoxicCHST11VCANCOL4A1XYLT1COL2A1ACANBCANGlial Scar FromationSOX9Axonal GrowthInhibition26IgG, IgMTP5333TTTTTTGRIN125VIMTT16T Cell Stimulating2FK506PPP3CA1TTFK5068FK5068GAP43TTFK5068Axonal RegenerationFKBP1AIL2C3 ToxinC1Q and Fc receptive cellsMAGRTN4RHOARHOCRHOBROCK2OMGRTN4RLILRB311MyelinInjury ResponseArachidonic acidPGH2PGHS-246TT39ROS1NOX4bta-mir-23bOlomoucine52CDK1GDNF29TTSEMA6A44TTAxonal GrowthInhibitionGJA1ATP-Release48TTBDNFTTImmediate Response Genes502-Methoxyestradiol30TTRAC1TTTTAstroctyeFOXO313TTCDKN1BTT13N2 Glial Precursor12EGFRPD 168393TT634CASP3TTTT


Description

This pathway provides an overview of cell types, therapeutic targets, drugs, new proposed targets and pathways implicated in spinal cord injury. Spinal cord injury is a complex multistep process that involves the regulation of gene expression and signaling in motor neurons, oligodentrocytes, microglia, and astrocytes that trigger immediate immune responses lasting several weeks. Within 24 hours, chemoattractants and cytokines released from the site of injury activate neutrophils which further recruit B and T cells or recruit monocytes that ultimately result in infiltration and activation by microglia and macrophages. These immune responses result in inflammation, excitotoxicity, cell death, formation of glial scar, and suppression of axonal regeneration. An increase in the expression of cell cycle genes further results in proliferation of astrocytes and microglia that leads to apoptosis and necrosis of oligodentrocytes and neurons. An example therapy is the administration of the immunosuppressant FK506, also used in transplantation to offer neuroprotection.

Comments

HomologyConvert 
This pathway was inferred from Homo sapiens pathway WP2431(80343) with a 97.0% conversion rate.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Saganovأ، K, Gأ،lik J, Blaإ،ko J, Korimovأ، A, Raؤچekovأ، E, Vanickأ½ I; ''''; , PubMed
  2. Dekaban GA, Thawer S; ''Pathogenic antibodies are active participants in spinal cord injury.''; J Clin Invest, 2009 PubMed
  3. DAGCI T, ARMAGAN G, KONYALIOGLU S, YALCIN A; ''Alterations in the expression of the apurinic/apyrimidinic endonuclease-1/redox factor-1 (APE/ref-1) and DNA damage in the caudal region of acute and chronic spinal cord injured rats treated by embryonic neural stem cells.''; Physiol Res, 2009 PubMed
  4. Lavezzi AM, Casale V, Oneda R, Weese-Mayer DE, Matturri L; ''Sudden Infant Death Syndrome and Sudden Intrauterine Unexplained Death: Correlation Between Hypoplasia of Raphأƒآ¢أ‚آˆأ‚آڑأƒآکأ‚آ¬أƒآ¯أ‚آ؟أ‚آ½أƒآژأ‚آ©أƒآ¢أ‚آˆأ‚آڑأƒآکأ‚آ¬أƒآ¯أ‚آ؟أ‚آ½أƒآژأ‚آ©أƒآژأ‚آ© Nuclei and Serotonin Transporter Gene Promoter Polymorphism.''; Pediatr Res, 2009 PubMed
  5. Cafferty WB, Duffy P, Huebner E, Strittmatter SM; ''''; , PubMed
  6. Erschbamer M, Pernold K, Olson L; ''Inhibiting epidermal growth factor receptor improves structural, locomotor, sensory, and bladder recovery from experimental spinal cord injury.''; J Neurosci, 2007 PubMed
  7. McKillop WM, Dragan M, Schedl A, Brown A; ''''; , PubMed
  8. Saganovأ، K, Orendأ،covأ، J, Sulla I Jr, Filipcأ­k P, Cأ­zkovأ، D, Vanickأ½ I; ''''; , PubMed
  9. Liu NK, Zhang YP, Han S, Pei J, Xu LY, Lu PH, Shields CB, Xu XM; ''Annexin A1 reduces inflammatory reaction and tissue damage through inhibition of phospholipase A2 activation in adult rats following spinal cord injury.''; J Neuropathol Exp Neurol, 2007 PubMed
  10. Saadoun S, Bell BA, Verkman AS, Papadopoulos MC; ''''; , PubMed
  11. Tohda C, Kuboyama T; ''Current and future therapeutic strategies for functional repair of spinal cord injury.''; Pharmacol Ther, 2011 PubMed
  12. Ju P, Zhang S, Yeap Y, Feng Z; ''Induction of neuronal phenotypes from NG2+ glial progenitors by inhibiting epidermal growth factor receptor in mouse spinal cord injury.''; Glia, 2012 PubMed
  13. Zhang S, Huan W, Wei H, Shi J, Fan J, Zhao J, Shen A, Teng H; ''FOXO3a/p27kip1 expression and essential role after acute spinal cord injury in adult rat.''; J Cell Biochem, 2013 PubMed
  14. Kitayama M, Ueno M, Itakura T, Yamashita T; ''Activated microglia inhibit axonal growth through RGMa.''; PLoS One, 2011 PubMed
  15. ''''; , PubMed
  16. Menet V, Prieto M, Privat A, Gimأ©nez y Ribotta M; ''''; , PubMed
  17. Lee SM, Rosen S, Weinstein P, van Rooijen N, Noble-Haeusslein LJ; ''Prevention of both neutrophil and monocyte recruitment promotes recovery after spinal cord injury.''; J Neurotrauma, 2011 PubMed
  18. Myers SA, DeVries WH, Andres KR, Gruenthal MJ, Benton RL, Hoying JB, Hagg T, Whittemore SR; ''CD47 knockout mice exhibit improved recovery from spinal cord injury.''; Neurobiol Dis, 2011 PubMed
  19. Schwab JM, Frei E, Klusman I, Schnell L, Schwab ME, Schluesener HJ; ''AIF-1 expression defines a proliferating and alert microglial/macrophage phenotype following spinal cord injury in rats.''; J Neuroimmunol, 2001 PubMed
  20. Farooque M, Isaksson J, Olsson Y; ''Improved recovery after spinal cord trauma in ICAM-1 and P-selectin knockout mice.''; Neuroreport, 1999 PubMed
  21. Yu CG, Yezierski RP, Joshi A, Raza K, Li Y, Geddes JW; ''''; , PubMed
  22. Lأ³pez-Vales R, Ghasemlou N, Redensek A, Kerr BJ, Barbayianni E, Antonopoulou G, Baskakis C, Rathore KI, Constantinou-Kokotou V, Stephens D, Shimizu T, Dennis EA, Kokotos G, David S; ''Phospholipase A2 superfamily members play divergent roles after spinal cord injury.''; FASEB J, 2011 PubMed
  23. Terayama R, Bando Y, Murakami K, Kato K, Kishibe M, Yoshida S; ''Neuropsin promotes oligodendrocyte death, demyelination and axonal degeneration after spinal cord injury.''; Neuroscience, 2007 PubMed
  24. Fernأ،ndez-Martos CM, Gonzأ،lez P, Rodriguez FJ; ''Acute leptin treatment enhances functional recovery after spinal cord injury.''; PLoS One, 2012 PubMed
  25. Woods AS, Kaminski R, Oz M, Wang Y, Hauser K, Goody R, Wang HY, Jackson SN, Zeitz P, Zeitz KP, Zolkowska D, Schepers R, Nold M, Danielson J, Grأ¤slund A, Vukojevic V, Bakalkin G, Basbaum A, Shippenberg T; ''Decoy peptides that bind dynorphin noncovalently prevent NMDA receptor-mediated neurotoxicity.''; J Proteome Res, 2006 PubMed
  26. Eng LF, Ghirnikar RS, Lee YL; ''Glial fibrillary acidic protein: GFAP-thirty-one years (1969-2000).''; Neurochem Res, 2000 PubMed
  27. David S, Kroner A; ''Repertoire of microglial and macrophage responses after spinal cord injury.''; Nat Rev Neurosci, 2011 PubMed
  28. Genovese T, Mazzon E, Crisafulli C, Di Paola R, Muiأ  C, Esposito E, Bramanti P, Cuzzocrea S; ''TNF-alpha blockage in a mouse model of SCI: evidence for improved outcome.''; Shock, 2008 PubMed
  29. Hashimoto M, Ito T, Fukumitsu H, Nomoto H, Furukawa Y, Furukawa S; ''Stimulation of production of glial cell line-derived neurotrophic factor and nitric oxide by lipopolysaccharide with different dose-responsiveness in cultured rat macrophages.''; Biomed Res, 2005 PubMed
  30. Wang YF, Fan ZK, Cao Y, Yu DS, Zhang YQ, Wang YS; ''2-Methoxyestradiol inhibits the up-regulation of AQP4 and AQP1 expression after spinal cord injury.''; Brain Res, 2011 PubMed
  31. Chu GK, Yu W, Fehlings MG; ''The p75 neurotrophin receptor is essential for neuronal cell survival and improvement of functional recovery after spinal cord injury.''; Neuroscience, 2007 PubMed
  32. Wu J, Stoica BA, Faden AI; ''Cell cycle activation and spinal cord injury.''; Neurotherapeutics, 2011 PubMed
  33. Floriddia EM, Rathore KI, Tedeschi A, Quadrato G, Wuttke A, Lueckmann JM, Kigerl KA, Popovich PG, Di Giovanni S; ''''; , PubMed
  34. Jain A, McKeon RJ, Brady-Kalnay SM, Bellamkonda RV; ''Sustained delivery of activated Rho GTPases and BDNF promotes axon growth in CSPG-rich regions following spinal cord injury.''; PLoS One, 2011 PubMed
  35. Sharma HS; ''''; , PubMed
  36. ''''; , PubMed
  37. Pineau I, Sun L, Bastien D, Lacroix S; ''Astrocytes initiate inflammation in the injured mouse spinal cord by promoting the entry of neutrophils and inflammatory monocytes in an IL-1 receptor/MyD88-dependent fashion.''; Brain Behav Immun, 2010 PubMed
  38. Adjan VV, Hauser KF, Bakalkin G, Yakovleva T, Gharibyan A, Scheff SW, Knapp PE; ''Caspase-3 activity is reduced after spinal cord injury in mice lacking dynorphin: differential effects on glia and neurons.''; Neuroscience, 2007 PubMed
  39. Im YB, Jee MK, Choi JI, Cho HT, Kwon OH, Kang SK; ''''; , PubMed
  40. Tonai T, Shiba K, Taketani Y, Ohmoto Y, Murata K, Muraguchi M, Ohsaki H, Takeda E, Nishisho T; ''A neutrophil elastase inhibitor (ONO-5046) reduces neurologic damage after spinal cord injury in rats.''; J Neurochem, 2001 PubMed
  41. ''''; , PubMed
  42. Pajoohesh-Ganji A, Knoblach SM, Faden AI, Byrnes KR; ''Characterization of inflammatory gene expression and galectin-3 function after spinal cord injury in mice.''; Brain Res, 2012 PubMed
  43. Pajoohesh-Ganji A, Knoblach SM, Faden AI, Byrnes KR; ''Characterization of inflammatory gene expression and galectin-3 function after spinal cord injury in mice.''; Brain Res, 2012 PubMed
  44. Shim SO, Cafferty WB, Schmidt EC, Kim BG, Fujisawa H, Strittmatter SM; ''PlexinA2 limits recovery from corticospinal axotomy by mediating oligodendrocyte-derived Sema6A growth inhibition.''; Mol Cell Neurosci, 2012 PubMed
  45. Puschmann TB, Turnley AM; ''''; , PubMed
  46. Resnick DK, Graham SH, Dixon CE, Marion DW; ''Role of cyclooxygenase 2 in acute spinal cord injury.''; J Neurotrauma, 1998 PubMed
  47. Chalimoniuk M, King-Pospisil K, Metz CN, Toborek M; ''Macrophage migration inhibitory factor induces cell death and decreases neuronal nitric oxide expression in spinal cord neurons.''; Neuroscience, 2006 PubMed
  48. Huang C, Han X, Li X, Lam E, Peng W, Lou N, Torres A, Yang M, Garre JM, Tian GF, Bennett MV, Nedergaard M, Takano T; ''Critical role of connexin 43 in secondary expansion of traumatic spinal cord injury.''; J Neurosci, 2012 PubMed
  49. ''''; , PubMed
  50. Di Giovanni S,