Signaling by TGF-beta Receptor Complex (Homo sapiens)

From WikiPathways

Jump to: navigation, search
24304045, 5218325235, 5339, 43545211, 46, 5717, 4122, 491552321, 51, 5919, 23, 33, 345417, 50, 5711, 46, 574846481735, 5513, 463, 12, 25, 564, 1620, 2821, 27, 29, 52, 58117-9, 23, 33...3, 14, 25, 44, 563022, 491114, 52262620, 2820, 2811, 46, 573848, 60cytosolNoteDegradationearly endosomecytosolDisassembly of Tight Junctionsearly endosome membranenucleoplasmGolgi lumenDegradation of TGFBR complexp-4S,T185,T186-TGFBR1 UBC(305-380) NEDD4L F11R p-4S,T185,T186-TGFBR1 SMAD7 UBC(77-152) TGFB1 UBB(1-76) p-S465,S467-SMAD2 p-S465,S467-SMAD2 SMURF1 UBB(153-228) UBC(305-380) p-4S,T185,T186-TGFBR1 TGFBR2 PMEPA1 NEDD8-K556,K567-TGFBR2 PPP1R15A UBC(77-152) UBC(1-76) SMAD2 ZFYVE9-1 UBC(609-684) TGFBR2 SMAD7 SMAD7 SMURF/NEDD4LPRKCZ ZFYVE9-1 UBC(1-76) UBC(229-304) TGFB1 TGFB1 FKBP1Ap-2S-SMAD2/3:SMAD4UBC(533-608) UBC(153-228) TGFBR2 UBC(77-152) SMURF1SMAD3SMAD2 PPP1CB SMURF1 UBC(305-380) NEDD4L UBC(305-380) p-S345-PARD6A PMEPA1p-4S,T185,T186-TGFBR1 PARD3 GTP TGFBR2 UBC(153-228) TGFB1:p-TGFBR:ZFYVE9:SMAD2/3PARD3 UBB(1-76) F11R TGFBR2 p-2S-SMAD2/3:MTMR4PRKCZ UBB(77-152) ARHGEF18 UBC(229-304) TGFB1 SMAD7:SMURF1:XPO1TGFBR2UBC(533-608) UBC(153-228) RPS27A(1-76) TGFBR1 H2Op-S423,S425-SMAD3 RPS27A(1-76) SMAD2 CGN UBC(153-228) UBC(77-152) p-S423,S425-SMAD3 TGFB1:p-TGFBR:ZFYVE9:p-2S-SMAD2/3TGFB1 UBC(457-532) UBA52(1-76) SMAD7 TGFB1:p-TGFBR:ZFYVE9ARHGEF18 UBC(153-228) TGFBR2 UBA52(1-76) SMAD7:NEDD4LRPS27A(1-76) UBC(229-304) ARHGEF18 H2OUBC(457-532) UBC(609-684) Dimeric TGFB1TGFB1:TGFBR2:TGFBR1UBC(229-304) UBA52(1-76) SMAD4SMURF1 TGFBR2 SMAD2/3p-S423,S425-SMAD3 UBC(229-304) SMAD7 UBA52(1-76) UBC(229-304) p-S345-PARD6A PARD3 p-S465,S467-SMAD2 RHOA TGFBR2 UBC(1-76) p-S423,S425-SMAD3 UBB(77-152) RPS27A(1-76) TGFB1(30-390) p-S345-PARD6A K556-TGFBR2-G76-NEDD8 SMURF2 p-S465,S467-SMAD2 AcM-UBE2MTGFB1 SMURF1 TGFBR2 TGFBR1 PPP1R15A UCHL5 MTMR4Pip-4S,T185,T186-TGFBR1 C111-AcM-UBE2M-G76-NEDD8 TGFB1 UBC(457-532) UBC(229-304) CGN SMAD7 p-4S,T185,T186-TGFBR1 SMAD7UBC(533-608) UBC(1-76) p-4S,T185,T186-TGFBR1 UBB(1-76) p-S423,S425-SMAD3 TGFB1: TGFBR2:p-TGFBR1: BAMBI:SMAD7TGFB1:p-TGFBR:I-SMAD7:GADD34:PP1:ZFYVE9Pre-TGFB1 complexTGFB1 SMAD7 UBB(153-228) SMAD7:SMURF1STRAPRHOA UBC(381-456) XPO1SMAD7:NEDD4LTGFBR2 UBC(533-608) UBC(381-456) ZFYVE9-1 UBC(153-228) UBB(77-152) Transcriptionalactivity ofSMAD2/SMAD3:SMAD4heterotrimerUb-SMAD2UBB(1-76) TGFB1 UCHL5/USP15SMURF1 XPO1 p-4S,T185,T186-TGFBR1 UBC(305-380) SMAD7 MTMR4 FURINp-2S-SMAD2/3:PMEPA1SMURF1 UBA52(1-76) UBA52(1-76) UBC(1-76) SMAD7 TightJunctionComplex:TGFB1:TGFBR2:TGFBR1:PARD6A:RHOANEDD8-AcM-UBE2MSMAD3 SMAD7 PRKCZ UBC(381-456) XPO1PPP1CB SMAD7:SMURF2UBC(609-684) TGFBR2 UBC(381-456) UBC(533-608) RPS27A(1-76) p-4S,T185,T186-TGFBR1 SMURF2TGFB1 UBA52(1-76) SMAD3 UBB(1-76) TGFB1:TGFBR2:TGFBR1UBC(229-304) SMURF2 RHOA UBC(77-152) TGFBR1:FKBP1ARPS27A(1-76) p-S465,S467-SMAD2 PARD3 F11R UBB(153-228) PPP1CC PMEPA1 TGFB1:TGFBR2:p-TGFBR1SMAD2SMAD2/3:PMEPA1UBC(1-76) UbATPUBB(1-76) UBB(153-228) ATPUBB(153-228) UbUBB(1-76) PARD6A p-4S,T185,T186-TGFBR1 UBB(77-152) TGFB1 PARD6A SMURF1 NEDD4L PRKCZ UBC(533-608) SMURF2 CGN UBC(533-608) UBC(381-456) UBC(1-76) TGFBR2 SMURF2 UCHL5 TGFB1 H2ONEDD4L TGFB1: p-TGFBR:I-SMAD7UBC(1-76) TGFBR2 TGFBR2 SMAD7:SMURF/NEDD4LDimeric TGFB1:TGFBR2homodimerp-4S,T185,T186-TGFBR1 F11R PARD3 ARHGEF18 BAMBI UBC(457-532) UBC(381-456) UBC(381-456) TGFBR1 TGFBR2:CBLPMEPA1TGFB1 UBC(381-456) UBC(77-152) SMURF1 TGFBR2 TGFBR1 RPS27A(1-76) UBC(153-228) SMAD7 GADD34:PP1CGN SMAD3 UBC(609-684) SMAD4 ADPADPUbTGFB1 STUB1TGFB1:TGFBR2:Ub-p-TGFBR1:Ub-SMAD7UBC(153-228) ZFYVE9-1TGFBR2 UBC(1-76) SMAD2 UBB(153-228) PPP1CC SMAD3 UBC(457-532) SMAD7:SMURF1PARD3 UBC(153-228) ARHGEF18 TGFB1 RHOA Ub-SMAD3TGFB1 TightJunctionComplex:TGFBR1:PARD6A:RHOAUBC(77-152) p-4S,T185,T186-TGFBR1 ATPNEDD4L UBC(457-532) TGFB1:TGFBR2:p-TGFBR1:SMAD7:SMURF/NEDD4LZFYVE9-1 RPS27A(1-76) SMAD7 TGFB1 UBC(457-532) PPP1CA UBB(77-152) TGFBR2 SMURF1UBA52(1-76) UBC(229-304) UBC(457-532) TGFB1 TGFBR2 SMURF2UBC(609-684) UBB(77-152) UBC(533-608) UBC(1-76) UBC(77-152) TGFB1 STRAP G76-NEDD8-C111-AcM-UBE2M SMAD2:SMURF2UBC(609-684) TightJunctionComplex:TGFB1:TGFBR2:p-TGFBR1:p-PARD6A:RHOA:SMURF1TGFBR1 PPP1CA UBC(381-456) TGFB1 SMAD7 TGFB1 USP15 SMAD3:STUB1UBC(305-380) UBC(609-684) SMAD7:SMURF2UBC(229-304) p-4S,T185,T186-TGFBR1 UBC(533-608) UBB(1-76) UBC(305-380) UBA52(1-76) RPS27A(1-76) UBB(77-152) Neddylated TGFBR2UBB(153-228) K567-TGFBR2-G76-NEDD8 PiUBB(1-76) UBC(609-684) UBC(381-456) UBC(457-532) SMAD7 UBA52(1-76) CGN SMAD7 TGFB1:p-TGFBR:STRAPF11R UBC(609-684) Tight JunctionComplex:PARD6A:RHOAFKBP1A GTP USP15 UBB(153-228) UBC(609-684) p-4S,T185,T186-TGFBR1 p-4S,T185,T186-TGFBR1 TGFBR2 UBB(77-152) RHOA TGFBR2 TGFB1 TGFB1:TGFBR2:Ub-p-TGFBR1:Ub-SMAD7:UCHL5/USP15SMAD7 ADPRHOA FKBP1A BAMBITightJunctionComplex:TGFB1:TGFBR2:p-TGFBR1:p-PARD6A:RHOAUBB(77-152) SMAD7UBC(305-380) TightJunctionComplex:TGFB1:TGFBR2:p-TGFBR1:p-PARD6A:Ub-RHOA:SMURF1UBB(153-228) UbUBC(305-380) CBL p-2S-SMAD2/3TGFBR2 SMAD3 UBC(77-152) CGN CBLSMURF2 UBC(153-228) NEDD4LSTUB1 UBB(77-152) UBB(153-228) GTP STRAP PRKCZ SMURF2 p-4S,T185,T186-TGFBR1 RPS27A(1-76) ARHGEF18 TGFB1: p-TGFBR:STRAP: SMAD7PRKCZ UBC(305-380) UBC(457-532) Large latent complexof TGFB1SMAD2 TGFB1:TGFBR2:p-TGFBR1:Ub-SMAD7UBB(1-76) PARD6A UBC(533-608) F11R UBC(77-152) 2, 5, 10, 31, 36...544637621, 27, 29, 5854


The TGF-beta/BMP pathway incorporates several signaling pathways that share most, but not all, components of a central signal transduction engine. The general signaling scheme is rather simple: upon binding of a ligand, an activated plasma membrane receptor complex is formed, which passes on the signal towards the nucleus through a phosphorylated receptor SMAD (R-SMAD). In the nucleus, the activated R-SMAD promotes transcription in complex with a closely related helper molecule termed Co-SMAD (SMAD4). However, this simple linear pathway expands into a network when various regulatory components and mechanisms are taken into account. The signaling pathway includes a great variety of different TGF-beta/BMP superfamily ligands and receptors, several types of the R-SMADs, and functionally critical negative feedback loops. The R-SMAD:Co-SMAD complex can interact with a great number of transcriptional co-activators/co-repressors to regulate positively or negatively effector genes, so that the interpretation of a signal depends on the cell-type and cross talk with other signaling pathways such as Notch, MAPK and Wnt. The pathway plays a number of different biological roles in the control of embryonic and adult cell proliferation and differentiation, and it is implicated in a great number of human diseases.
TGF beta (TGFB1) is secreted as a homodimer, and as such it binds to TGF beta receptor II (TGFBR2), inducing its dimerization. Binding of TGF beta enables TGFBR2 to form a stable hetero-tetrameric complex with TGF beta receptor I homodimer (TGFBR1). TGFBR2 acts as a serine/threonine kinase and phosphorylates serine and threonine residues within the short GS domain (glycine-serine rich domain) of TGFBR1.
The phosphorylated heterotetrameric TGF beta receptor complex (TGFBR) internalizes into clathrin coated endocytic vesicles where it associates with the endosomal membrane protein SARA. SARA facilitates the recruitment of cytosolic SMAD2 and SMAD3, which act as R-SMADs for TGF beta receptor complex. TGFBR1 phosphorylates recruited SMAD2 and SMAD3, inducing a conformational change that promotes formation of R-SMAD trimers and dissociation of R-SMADs from the TGF beta receptor complex.
In the cytosol, phosphorylated SMAD2 and SMAD3 associate with SMAD4 (known as Co-SMAD), forming a heterotrimer which is more stable than the R-SMAD homotrimers. R-SMAD:Co-SMAD heterotrimer translocates to the nucleus where it directly binds DNA and, in cooperation with other transcription factors, regulates expression of genes involved in cell differentiation, in a context-dependent manner.
The intracellular level of SMAD2 and SMAD3 is regulated by SMURF ubiquitin ligases, which target R-SMADs for degradation. In addition, nuclear R-SMAD:Co-SMAD heterotrimer stimulates transcription of inhibitory SMADs (I-SMADs), forming a negative feedback loop. I-SMADs bind the phosphorylated TGF beta receptor complexes on caveolin coated vesicles, derived from the lipid rafts, and recruit SMURF ubiquitin ligases to TGF beta receptors, leading to ubiquitination and degradation of TGFBR1. Nuclear R-SMAD:Co-SMAD heterotrimers are targets of nuclear ubiquitin ligases which ubiquitinate SMAD2/3 and SMAD4, causing heterotrimer dissociation, translocation of ubiquitinated SMADs to the cytosol and their proteasome-mediated degradation. For a recent review of TGF-beta receptor signaling, please refer to Kang et al. 2009. View original pathway at Reactome.


Pathway is converted from Reactome ID: 170834
Reactome version: 74
Reactome Author 
Reactome Author: Heldin, Carl-Henrik, Moustakas, A, Huminiecki, L, Jassal, Bijay

Quality Tags

Ontology Terms



View all...
  1. Souchelnytskyi S, ten Dijke P, Miyazono K, Heldin CH.; ''Phosphorylation of Ser165 in TGF-beta type I receptor modulates TGF-beta1-induced cellular responses.''; PubMed Europe PMC Scholia
  2. Lin X, Duan X, Liang YY, Su Y, Wrighton KH, Long J, Hu M, Davis CM, Wang J, Brunicardi FC, Shi Y, Chen YG, Meng A, Feng XH.; ''PPM1A functions as a Smad phosphatase to terminate TGFbeta signaling.''; PubMed Europe PMC Scholia
  3. Wrana JL, Attisano L, Cárcamo J, Zentella A, Doody J, Laiho M, Wang XF, Massagué J.; ''TGF beta signals through a heteromeric protein kinase receptor complex.''; PubMed Europe PMC Scholia
  4. Hayashi H, Abdollah S, Qiu Y, Cai J, Xu YY, Grinnell BW, Richardson MA, Topper JN, Gimbrone MA, Wrana JL, Falb D.; ''The MAD-related protein Smad7 associates with the TGFbeta receptor and functions as an antagonist of TGFbeta signaling.''; PubMed Europe PMC Scholia
  5. Dupont S, Mamidi A, Cordenonsi M, Montagner M, Zacchigna L, Adorno M, Martello G, Stinchfield MJ, Soligo S, Morsut L, Inui M, Moro S, Modena N, Argenton F, Newfeld SJ, Piccolo S.; ''FAM/USP9x, a deubiquitinating enzyme essential for TGFbeta signaling, controls Smad4 monoubiquitination.''; PubMed Europe PMC Scholia
  6. Leduc R, Molloy SS, Thorne BA, Thomas G.; ''Activation of human furin precursor processing endoprotease occurs by an intramolecular autoproteolytic cleavage.''; PubMed Europe PMC Scholia
  7. Kawabata M, Inoue H, Hanyu A, Imamura T, Miyazono K.; ''Smad proteins exist as monomers in vivo and undergo homo- and hetero-oligomerization upon activation by serine/threonine kinase receptors.''; PubMed Europe PMC Scholia
  8. Qin BY, Chacko BM, Lam SS, de Caestecker MP, Correia JJ, Lin K.; ''Structural basis of Smad1 activation by receptor kinase phosphorylation.''; PubMed Europe PMC Scholia
  9. Wu JW, Hu M, Chai J, Seoane J, Huse M, Li C, Rigotti DJ, Kyin S, Muir TW, Fairman R, Massagué J, Shi Y.; ''Crystal structure of a phosphorylated Smad2. Recognition of phosphoserine by the MH2 domain and insights on Smad function in TGF-beta signaling.''; PubMed Europe PMC Scholia
  10. Varelas X, Sakuma R, Samavarchi-Tehrani P, Peerani R, Rao BM, Dembowy J, Yaffe MB, Zandstra PW, Wrana JL.; ''TAZ controls Smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal.''; PubMed Europe PMC Scholia
  11. Kuratomi G, Komuro A, Goto K, Shinozaki M, Miyazawa K, Miyazono K, Imamura T.; ''NEDD4-2 (neural precursor cell expressed, developmentally down-regulated 4-2) negatively regulates TGF-beta (transforming growth factor-beta) signalling by inducing ubiquitin-mediated degradation of Smad2 and TGF-beta type I receptor.''; PubMed Europe PMC Scholia
  12. Zhang W, Jiang Y, Wang Q, Ma X, Xiao Z, Zuo W, Fang X, Chen YG.; ''Single-molecule imaging reveals transforming growth factor-beta-induced type II receptor dimerization.''; PubMed Europe PMC Scholia
  13. Ogunjimi AA, Briant DJ, Pece-Barbara N, Le Roy C, Di Guglielmo GM, Kavsak P, Rasmussen RK, Seet BT, Sicheri F, Wrana JL.; ''Regulation of Smurf2 ubiquitin ligase activity by anchoring the E2 to the HECT domain.''; PubMed Europe PMC Scholia
  14. Chen YG, Liu F, Massague J.; ''Mechanism of TGFbeta receptor inhibition by FKBP12.''; PubMed Europe PMC Scholia
  15. Tsukazaki T, Chiang TA, Davison AF, Attisano L, Wrana JL.; ''SARA, a FYVE domain protein that recruits Smad2 to the TGFbeta receptor.''; PubMed Europe PMC Scholia
  16. Nakao A, Afrakhte M, Morén A, Nakayama T, Christian JL, Heuchel R, Itoh S, Kawabata M, Heldin NE, Heldin CH, ten Dijke P.; ''Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling.''; PubMed Europe PMC Scholia
  17. Tajima Y, Goto K, Yoshida M, Shinomiya K, Sekimoto T, Yoneda Y, Miyazono K, Imamura T.; ''Chromosomal region maintenance 1 (CRM1)-dependent nuclear export of Smad ubiquitin regulatory factor 1 (Smurf1) is essential for negative regulation of transforming growth factor-beta signaling by Smad7.''; PubMed Europe PMC Scholia
  18. Souchelnytskyi S, Rönnstrand L, Heldin CH, ten Dijke P.; ''Phosphorylation of Smad signaling proteins by receptor serine/threonine kinases.''; PubMed Europe PMC Scholia
  19. Souchelnytskyi S, Tamaki K, Engström U, Wernstedt C, ten Dijke P, Heldin CH.; ''Phosphorylation of Ser465 and Ser467 in the C terminus of Smad2 mediates interaction with Smad4 and is required for transforming growth factor-beta signaling.''; PubMed Europe PMC Scholia
  20. Xin H, Xu X, Li L, Ning H, Rong Y, Shang Y, Wang Y, Fu XY, Chang Z.; ''CHIP controls the sensitivity of transforming growth factor-beta signaling by modulating the basal level of Smad3 through ubiquitin-mediated degradation.''; PubMed Europe PMC Scholia
  21. Ebnet K, Suzuki A, Horikoshi Y, Hirose T, Meyer Zu Brickwedde MK, Ohno S, Vestweber D.; ''The cell polarity protein ASIP/PAR-3 directly associates with junctional adhesion molecule (JAM).''; PubMed Europe PMC Scholia
  22. Wicks SJ, Haros K, Maillard M, Song L, Cohen RE, Dijke PT, Chantry A.; ''The deubiquitinating enzyme UCH37 interacts with Smads and regulates TGF-beta signalling.''; PubMed Europe PMC Scholia
  23. Chacko BM, Qin BY, Tiwari A, Shi G, Lam S, Hayward LJ, De Caestecker M, Lin K.; ''Structural basis of heteromeric smad protein assembly in TGF-beta signaling.''; PubMed Europe PMC Scholia
  24. Kang JS, Liu C, Derynck R.; ''New regulatory mechanisms of TGF-beta receptor function.''; PubMed Europe PMC Scholia
  25. Moustakas A, Lin HY, Henis YI, Plamondon J, O'Connor-McCourt MD, Lodish HF.; ''The transforming growth factor beta receptors types I, II, and III form hetero-oligomeric complexes in the presence of ligand.''; PubMed Europe PMC Scholia
  26. Yu J, Pan L, Qin X, Chen H, Xu Y, Chen Y, Tang H.; ''MTMR4 attenuates transforming growth factor beta (TGFbeta) signaling by dephosphorylating R-Smads in endosomes.''; PubMed Europe PMC Scholia
  27. Ebnet K, Aurrand-Lions M, Kuhn A, Kiefer F, Butz S, Zander K, Meyer zu Brickwedde MK, Suzuki A, Imhof BA, Vestweber D.; ''The junctional adhesion molecule (JAM) family members JAM-2 and JAM-3 associate with the cell polarity protein PAR-3: a possible role for JAMs in endothelial cell polarity.''; PubMed Europe PMC Scholia
  28. Li L, Xin H, Xu X, Huang M, Zhang X, Chen Y, Zhang S, Fu XY, Chang Z.; ''CHIP mediates degradation of Smad proteins and potentially regulates Smad-induced transcription.''; PubMed Europe PMC Scholia
  29. Bazzoni G, Martinez-Estrada OM, Orsenigo F, Cordenonsi M, Citi S, Dejana E.; ''Interaction of junctional adhesion molecule with the tight junction components ZO-1, cingulin, and occludin.''; PubMed Europe PMC Scholia
  30. Shi W, Sun C, He B, Xiong W, Shi X, Yao D, Cao X.; ''GADD34-PP1c recruited by Smad7 dephosphorylates TGFbeta type I receptor.''; PubMed Europe PMC Scholia
  31. Wotton D, Lo RS, Lee S, Massagué J.; ''A Smad transcriptional corepressor.''; PubMed Europe PMC Scholia
  32. Watanabe Y, Itoh S, Goto T, Ohnishi E, Inamitsu M, Itoh F, Satoh K, Wiercinska E, Yang W, Shi L, Tanaka A, Nakano N, Mommaas AM, Shibuya H, Ten Dijke P, Kato M.; ''TMEPAI, a transmembrane TGF-beta-inducible protein, sequesters Smad proteins from active participation in TGF-beta signaling.''; PubMed Europe PMC Scholia
  33. Nakao A, Imamura T, Souchelnytskyi S, Kawabata M, Ishisaki A, Oeda E, Tamaki K, Hanai J, Heldin CH, Miyazono K, ten Dijke P.; ''TGF-beta receptor-mediated signalling through Smad2, Smad3 and Smad4.''; PubMed Europe PMC Scholia
  34. Macías-Silva M, Abdollah S, Hoodless PA, Pirone R, Attisano L, Wrana JL.; ''MADR2 is a substrate of the TGFbeta receptor and its phosphorylation is required for nuclear accumulation and signaling.''; PubMed Europe PMC Scholia
  35. Annes JP, Munger JS, Rifkin DB.; ''Making sense of latent TGFbeta activation.''; PubMed Europe PMC Scholia
  36. Chen CR, Kang Y, Siegel PM, Massagué J.; ''E2F4/5 and p107 as Smad cofactors linking the TGFbeta receptor to c-myc repression.''; PubMed Europe PMC Scholia
  37. Gong L, Yeh ET.; ''Identification of the activating and conjugating enzymes of the NEDD8 conjugation pathway.''; PubMed Europe PMC Scholia
  38. Datta PK, Moses HL.; ''STRAP and Smad7 synergize in the inhibition of transforming growth factor beta signaling.''; PubMed Europe PMC Scholia
  39. Yan X, Lin Z, Chen F, Zhao X, Chen H, Ning Y, Chen YG.; ''Human BAMBI cooperates with Smad7 to inhibit transforming growth factor-beta signaling.''; PubMed Europe PMC Scholia
  40. Datta PK, Chytil A, Gorska AE, Moses HL.; ''Identification of STRAP, a novel WD domain protein in transforming growth factor-beta signaling.''; PubMed Europe PMC Scholia
  41. Suzuki C, Murakami G, Fukuchi M, Shimanuki T, Shikauchi Y, Imamura T, Miyazono K.; ''Smurf1 regulates the inhibitory activity of Smad7 by targeting Smad7 to the plasma membrane.''; PubMed Europe PMC Scholia
  42. Stroschein SL, Wang W, Zhou S, Zhou Q, Luo K.; ''Negative feedback regulation of TGF-beta signaling by the SnoN oncoprotein.''; PubMed Europe PMC Scholia
  43. Onichtchouk D, Chen YG, Dosch R, Gawantka V, Delius H, Massagué J, Niehrs C.; ''Silencing of TGF-beta signalling by the pseudoreceptor BAMBI.''; PubMed Europe PMC Scholia
  44. Zhang W, Yuan J, Yang Y, Xu L, Wang Q, Zuo W, Fang X, Chen YG.; ''Monomeric type I and type III transforming growth factor-β receptors and their dimerization revealed by single-molecule imaging.''; PubMed Europe PMC Scholia
  45. Wang HR, Zhang Y, Ozdamar B, Ogunjimi AA, Alexandrova E, Thomsen GH, Wrana JL.; ''Regulation of cell polarity and protrusion formation by targeting RhoA for degradation.'';