Neurotoxicity of clostridium toxins (Homo sapiens)

From WikiPathways

Revision as of 13:36, 16 August 2017 by ReactomeTeam (Talk | contribs)
Jump to: navigation, search
3, 12, 23, 24, 29...30, 49, 51, 5518, 22, 46302930, 38, 49, 552726, 30, 37, 42, 5530296, 8, 3111, 3229, 33, 41, 5230, 42, 55307, 30, 45, 5515, 30, 38, 48, 5518, 193024, 39, 4330, 42, 55305, 17, 313012304, 24, 3929, 33, 412935, 362, 107, 34, 5029, 33351, 21, 30, 5516, 24, 3929, 33, 411, 21, 28, 3015, 30, 48, 5526, 30, 37, 42, 5529, 33, 41endocytic vesiclecytosolsynaptic vesicle lumenclathrin-coated endocytic vesiclesynaptic vesicle lumencytosolBoNT/A:SV2:GT1bZn2+ Zn2+ VAMP2(59-116)SNAP25(1-198)TeNT:gangliosidesSTX1(1-?)GT1b SV2B VAMP2(2-76)GT1b BoNT/F HC disulfide bonded VAMP2(2-81)TeNT LC disulfide bonded BoNT/F LC disulfide bonded SNAP25(199-206)Zn2+ BoNT/B HC disulfide bonded GT1b SYT2 TeNT LC disulfide bonded SNAP25(1-197)GD3 GT1b BoNT/G HCha70VAMP2(2-58)VAMP1GM1a GT1bSV2A GT1b BoNT/A:SV2:GT1bSV2B BoNT/E LC:Zn2+SYT1 Zn2+ VAMP2(2-76)SV2A BoNT/E HC disulfide bonded H+BoNT/B HC disulfide bonded BoNT/G LC disulfide bonded BoNT/B:SYT:GT1bGT1bBoNT/A HC:LC dimerBoNT/E LC disulfide bonded SV2A SV2B SYT1 VAMP2(77-116)SNAP25(1-198)TeNT LC SYT1,2GT1bSNAP25(199-206)Zn2+ BoNT/G HC disulfide bonded GT1b TeNT:gangliosidesSTX1B(1-?) BoNT/F HC disulfide bonded SV2B GD3 BoNT/B LC SV2A,B,CSV2A Zn2+ GM1a SYT2 VAMP1(1-60)BoNT/B HC:LC dimerBoNT/D HC:LC dimerha70 BoNT/D LC:Zn2+VAMP2BoNT/D LC BoNT/A LC disulfide bonded SV2C BoNT/B HC disulfide bonded Zn2+ Zn2+ GD3SV2B BoNT/B LC disulfide bonded BoNT/E:SV2:GT1bZn2+ SV2C BoNT/G:SYT1:GT1bZn2+ GT1b GT1b Zn2+ BoNT/F LC:Zn2+NTNHA VAMP1(62-118)SYT1BoNT/A LC disulfide bonded TeNT LC disulfide bonded H+Zn2+ Zn2+ Zn2+ BoNT/A HC disulfide bonded Zn2+ ha17GD2 SV2B ha33BoNT/A LC disulfide bonded BoNT/C HC disulfide bonded BoNT/G HC disulfide bonded BoNT/C LC disulfide bonded BoNT/G HC:LC dimerTeNT:gangliosidesH+SYT1 SV2B SNAP25BoNT/F:SV2:GT1bBoNT/E:NTNHAZn2+ GT1bSYT2 BoNT/B HC disulfide bonded SYT2 SV2A,BBoNT/G LC BoNT/E LC disulfide bonded BoNT/C HC disulfide bonded BoNT/F HC disulfide bonded NTNHA Zn2+ VAMP2VAMP1(1-61)SNAP25GT1bZn2+ BoNT/C HCBoNT/D LC disulfide bonded BoNT/A HC disulfide bonded VAMP1(84-118)VAMP2SV2C NTNHA GT1bSV2C SV2B H+TeNT LC:Zn2+VAMP2(77-116)BoNT/C LC:Zn2+GT1b VAMP1(61-118)BoNT/B:NTNHA:HASTX1(?-288)SV2A BoNT/B LC disulfide bonded GM1aBoNT/D:SV2:GD2BoNT/F HC:LC dimerSV2C BoNT/B LC:Zn2+ha70 SV2C BoNT/C HC:LC dimerGD2Zn2+ VAMP2(60-116)BoNT/B LC disulfide bonded BoNT/E HC disulfide bonded SNAP25BoNT/A LC disulfide bonded BoNT/F LC disulfide bonded SV2C SYT1,2STX1A BoNT/A LC:Zn2+BoNT/G HC disulfide bonded TeNT HC disulfide bonded BoNT/E LC disulfide bonded SV2B SYT1 NTNHABoNT/D HC disulfide bonded Zn2+ SV2A,B,Cha33 BoNT/C LC disulfide bonded SV2C GD2 GT1b SV2B ha17 BoNT/G LC disulfide bonded ha17 SYT1 SV2C BoNT/F LC TeNT HC disulfide bonded H+TeNT HCTeNT LC disulfide bonded SV2A GT1b SV2A BoNT/C LC Zn2+ BoNT/E LC H+GT1bBoNT/A HC disulfide bonded SV2A,B,CBoNT/C LC disulfide bonded STX1B SV2C Zn2+ STX1A(?-288) VAMP1Zn2+ GD3BoNT/A LC VAMP1(1-83)STX1A(1-?) H+H+BoNT/C HC disulfide bonded BoNT/A HCSV2A SV2A SV2B GM1a SV2A BoNT/E HCNTNHAVAMP2STX1B(?-288) BoNT/C:GT1bBoNT/B:SYT:GT1bGT1bGT1bBoNT/A HC disulfide bonded GD2SV2B SV2A SV2A,B,CSV2A BoNT/G LC disulfide bonded SV2A Zn2+ Zn2+ SV2B GD3 VAMP2(82-116)SYT1Zn2+ TeNT HC disulfide bonded BoNT/D LC disulfide bonded BoNT/E HC:LC dimerZn2+ BoNT/G LC:Zn2+Zn2+ BoNT/E LC disulfide bonded SV2A,BSV2A,B,CBoNT/G:SYT1:GT1bGM1aSV2A ha33 Zn2+ GT1bVAMP2(2-59)SV2B BoNT/D HCSV2B BoNT/B HCBoNT/E HC disulfide bonded SV2C BoNT/F HCBoNT/E:SV2:GT1bGT1b BoNT/E HC disulfide bonded STX1Zn2+ Zn2+ TeNT HC disulfide bonded BoNT/C:GT1bBoNT/F LC disulfide bonded SV2A BoNT/D:SV2:GD2Zn2+ SNAP25(198-206)SV2A,B,CTeNT HC:LC dimerBoNT/D LC disulfide bonded Zn2+ SV2B SYT1 Zn2+ BoNT/B LC disulfide bonded Zn2+ BoNT/F:SV2:GT1bZn2+ BoNT/D HC disulfide bonded GT1bBoNT/A:NTNHA:HASV2C BoNT/D HC disulfide bonded SV2A 2740, 4614, 473792220938, 4838385514, 4742272, 101337, 424094037, 42139422014, 4720, 36, 507, 45131, 211, 21204014, 47131, 21137, 45402914, 477, 4584014, 4720, 36, 5020, 501620, 35, 36, 50202014, 474313404019, 4217, 311398132592038, 481320133814, 4740813207, 45139449, 5111, 32134414, 4740994025, 5049, 5113403842421, 216, 31937


Description

Clostridial neurotoxins, when taken up by human neurons, block synaptic transmission by cleaving proteins required for the fusion of synaptic vesicles with the plasma membrane. They are remarkably efficient so that very small doses cause paralysis of an affected person (Lalli et al. 2003; Turton et al. 2002). All characterized clostridial neurotoxins are synthesized as products of chromosomal, plasmid or prophage-borne bacterial genes. The nascent toxin may be cleaved into light (LC) and heavy (HC) chain moieties that remain attached by noncovalent interactions and a disulfide bond (Turton et al. 2002).

Strains of Clostridium botulinum produce seven serologically distinct toxins, BoNT/A, B, C, D, E, F, and G. An eighth toxin, BoNT/H has recently been identified (Barash & Arnon 2014) but its molecular properties have not yet been described. Human poisoning most commonly result from ingestion of toxin contaminated food. More rarely, it is due to wound infection or clostridial colonization of the gut of an infant whose own gut flora have not yet developed or of an older individual whose flora have been suppressed. While all seven characterized toxins can cleave human target proteins, three, BoNT/A, B, and E, are most commonly associated with human disease (Hatheway 1995; Sakaguchi 1982). BoNT/F is also able to cause human botulism.<p>Once ingested, the botulinum toxin must be taken up from the gut lumen into the circulation, a process mediated by four accessory proteins. These proteins form a complex that mediates transcytosis of the toxin molecule across the gut epithelium, allowing its entry into the circulation. The accessory proteins produced by different C. botulinum strains differ in their affinities for polarized epithelia of different species (e.g., human versus canine), and may thus be a key factor in human susceptibility to the toxins of strains A, B, and E and resistance to the others (Simpson 2004).<p>Clostridium tetani produces TeNT toxin. Human poisoning is the result of toxin secretion by bacteria growing in an infected wound and the toxin is released directly into the circulation.<p>Circulating clostridial toxins are taken up by neurons at neuromuscular junctions. They bind to specific gangliosides (BoNT/C, TeNT) or to both gangliosides and synaptic vesicle proteins (BoNT/A, B, D G) exposed on the neuronal plasma membrane during vesicle exocytosis (Montal 2010). All seven characterized forms of BoNT are thought to be taken up into synaptic vesicles as these re-form at the neuromuscular junction. These vesicles remain close to the site of uptake and are rapidly re-loaded with neurotransmitter and acidified (Sudhoff 2004). TeNT, in contrast, is taken up into clathrin coated vesicles that reach the neuron cell body by retrograde transport and then possibly other neurons before undergoing acidification. Vesicle acidification causes a conformational change in the toxin, allowing its HC part to function as a channel through which its LC part is extruded into the neuronal cytosol. The HC - LC disulfide bond is cleaved and the cytosolic LC functions as a zinc metalloprotease to cleave specific bonds in proteins on the cytosolic faces of synaptic vesicles and plasma membranes that normally mediate exocytosis (Lalli et al. 2003; Montal 2010). View original pathway at:Reactome.</div>

Comments

Reactome-Converter 
Pathway is converted from Reactome ID: 168799
Reactome-version 
Reactome version: 61
Reactome Author 
Reactome Author: Krupa, S, Gopinathrao, G

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Chen C, Fu Z, Kim JJ, Barbieri JT, Baldwin MR.; ''Gangliosides as high affinity receptors for tetanus neurotoxin.''; PubMed
  2. Dong M, Liu H, Tepp WH, Johnson EA, Janz R, Chapman ER.; ''Glycosylated SV2A and SV2B mediate the entry of botulinum neurotoxin E into neurons.''; PubMed
  3. Amatsu S, Sugawara Y, Matsumura T, Kitadokoro K, Fujinaga Y.; ''Crystal structure of Clostridium botulinum whole hemagglutinin reveals a huge triskelion-shaped molecular complex.''; PubMed
  4. Sathyamoorthy V, Dasgupta BR, Foley J, Niece RL.; ''Botulinum neurotoxin type A: cleavage of the heavy chain into two halves and their partial sequences.''; PubMed
  5. Schiavo G, Malizio C, Trimble WS, Polverino de Laureto P, Milan G, Sugiyama H, Johnson EA, Montecucco C.; ''Botulinum G neurotoxin cleaves VAMP/synaptobrevin at a single Ala-Ala peptide bond.''; PubMed
  6. Rummel A, Häfner K, Mahrhold S, Darashchonak N, Holt M, Jahn R, Beermann S, Karnath T, Bigalke H, Binz T.; ''Botulinum neurotoxins C, E and F bind gangliosides via a conserved binding site prior to stimulation-dependent uptake with botulinum neurotoxin F utilising the three isoforms of SV2 as second receptor.''; PubMed
  7. Schiavo G, Rossetto O, Catsicas S, Polverino de Laureto P, DasGupta BR, Benfenati F, Montecucco C.; ''Identification of the nerve terminal targets of botulinum neurotoxin serotypes A, D, and E.''; PubMed
  8. Foran P, Shone CC, Dolly JO.; ''Differences in the protease activities of tetanus and botulinum B toxins revealed by the cleavage of vesicle-associated membrane protein and various sized fragments.''; PubMed
  9. Koriazova LK, Montal M.; ''Translocation of botulinum neurotoxin light chain protease through the heavy chain channel.''; PubMed
  10. Hatheway CL.; ''Botulism: the present status of the disease.''; PubMed
  11. Montal M.; ''Botulinum neurotoxin: a marvel of protein design.''; PubMed
  12. Lacy DB, Tepp W, Cohen AC, DasGupta BR, Stevens RC.; ''Crystal structure of botulinum neurotoxin type A and implications for toxicity.''; PubMed
  13. Peng L, Berntsson RP, Tepp WH, Pitkin RM, Johnson EA, Stenmark P, Dong M.; ''Botulinum neurotoxin D-C uses synaptotagmin I and II as receptors, and human synaptotagmin II is not an effective receptor for type B, D-C and G toxins.''; PubMed
  14. Agarwal R, Eswaramoorthy S, Kumaran D, Binz T, Swaminathan S.; ''Structural analysis of botulinum neurotoxin type E catalytic domain and its mutant Glu212-->Gln reveals the pivotal role of the Glu212 carboxylate in the catalytic pathway.''; PubMed
  15. Kozaki S, Kamata Y, Watarai S, Nishiki T, Mochida S.; ''Ganglioside GT1b as a complementary receptor component for Clostridium botulinum neurotoxins.''; PubMed
  16. Fu Z, Chen C, Barbieri JT, Kim JJ, Baldwin MR.; ''Glycosylated SV2 and gangliosides as dual receptors for botulinum neurotoxin serotype F.''; PubMed
  17. Kroken AR, Karalewitz AP, Fu Z, Kim JJ, Barbieri JT.; ''Novel ganglioside-mediated entry of botulinum neurotoxin serotype D into neurons.''; PubMed
  18. Simpson LL.; ''Identification of the major steps in botulinum toxin action.''; PubMed
  19. Lee K, Gu S, Jin L, Le TT, Cheng LW, Strotmeier J, Kruel AM, Yao G, Perry K, Rummel A, Jin R.; ''Structure of a bimodular botulinum neurotoxin complex provides insights into its oral toxicity.''; PubMed
  20. Schmidt JJ, Sathyamoorthy V, DasGupta BR.; ''Partial amino acid sequence of the heavy and light chains of botulinum neurotoxin type A.''; PubMed
  21. Dong M, Richards DA, Goodnough MC, Tepp WH, Johnson EA, Chapman ER.; ''Synaptotagmins I and II mediate entry of botulinum neurotoxin B into cells.''; PubMed
  22. Dasgupta BR, Datta A.; ''Botulinum neurotoxin type B (strain 657): partial sequence and similarity with tetanus toxin.''; PubMed
  23. Henderson I, Whelan SM, Davis TO, Minton NP.; ''Genetic characterisation of the botulinum toxin complex of Clostridium botulinum strain NCTC 2916.''; PubMed
  24. Montecucco C, Schiavo G.; ''Mechanism of action of tetanus and botulinum neurotoxins.''; PubMed
  25. Fujinaga Y, Sugawara Y, Matsumura T.; ''Uptake of botulinum neurotoxin in the intestine.''; PubMed
  26. Deinhardt K, Berninghausen O, Willison HJ, Hopkins CR, Schiavo G.; ''Tetanus toxin is internalized by a sequential clathrin-dependent mechanism initiated within lipid microdomains and independent of epsin1.''; PubMed
  27. Krieglstein K, Henschen A, Weller U, Habermann E.; ''Arrangement of disulfide bridges and positions of sulfhydryl groups in tetanus toxin.''; PubMed
  28. Schiavo G, Poulain B, Rossetto O, Benfenati F, Tauc L, Montecucco C.; ''Tetanus toxin is a zinc protein and its inhibition of neurotransmitter release and protease activity depend on zinc.''; PubMed
  29. Sudhof TC.; ''The synaptic vesicle cycle.''; PubMed
  30. Binz T, Blasi J, Yamasaki S, Baumeister A, Link E, Südhof TC, Jahn R, Niemann H.; ''Proteolysis of SNAP-25 by types E and A botulinal neurotoxins.''; PubMed
  31. Vaidyanathan VV, Yoshino K, Jahnz M, Dörries C, Bade S, Nauenburg S, Niemann H, Binz T.; ''Proteolysis of SNAP-25 isoforms by botulinum neurotoxin types A, C, and E: domains and amino acid residues controlling the formation of enzyme-substrate complexes and cleavage.''; PubMed
  32. Barash JR, Arnon SS.; ''A novel strain of Clostridium botulinum that produces type B and type H botulinum toxins.''; PubMed
  33. Lalli G, Bohnert S, Deinhardt K, Verastegui C, Schiavo G.; ''The journey of tetanus and botulinum neurotoxins in neurons.''; PubMed
  34. Peng L, Tepp WH, Johnson EA, Dong M.; ''Botulinum neurotoxin D uses synaptic vesicle protein SV2 and gangliosides as receptors.'';