COPI-mediated anterograde transport (Homo sapiens)

From WikiPathways

Revision as of 21:22, 31 October 2018 by ReactomeTeam (Talk | contribs)
Jump to: navigation, search
2, 7, 8, 23, 43...1, 2, 5, 11, 13...3, 27, 32, 38, 44...8, 25, 28, 31, 50...8, 16, 28, 45, 48...6, 17, 58, 5949, 53, 5512, 14, 15, 17, 40...8, 17, 93, 984, 8, 46, 78, 808, 36, 45, 48, 861, 2, 20, 22, 23, 43...5, 8-10, 16...endoplasmic reticulum-Golgi intermediate compartment membraneGolgi lumentransport vesiclecytosolRAB1:GTPCOPB1 ANK1 TMED9 KDELR1 GOLGB1 ANK2 COG2 BET1L KDELR2 ACTR10 GPI-CD55 COPG1 SPTBN2 SPTBN4 DCTN5 TMED7 RAB1:GTP:USO1coatomer:PalmC-YKT6:p24 dimers:cargo:anykrin:spectrin:dynein:dynactin:microtubulesARF:GDPCOPB2 6xHC-INS(25-110) GOSR1 COG6 TMED2 COPG2 COPA ANK1 TMED2 USO1 homodimerDCTN5 COG6 GOLGB1 COPE GOLGA2 BET1 ARF4 COPG2 TMED9 TMED2 SPTA1 PalmC-YKT6SPTBN2 TMED2 Dynein:Dynactin:microtubuleCOPZ1 ARFGAP1,2,3COG5 NSF hexamercis-Golgi t-SNARESCOG1 SPTBN4 COPA GTP COG1 DYNC1H1 COG5 GDP ANK1 COPB1 TMED10 CAPZA1 COG2 SPTBN2 BET1 COPZ2 NAPA COPB2 STX5 COG8 GOLGB1 homodimerBET1 COPA NSF ATPARF3 coatomerGPI-FOLR1 Microtubule protofilament ANK1 COPG1 DCTN3 KDELR3 GPI-CD55 ARF3 DCTN4 USO1 6xHC-INS(25-110) GOLGA2 GOSR2 TMED3 COPG2 Spectrin tetramerTMED7 DYNLL2 SPTBN4 KDELR2 ANK2 TMED3 RAB1A GPI-CD59 ARF5 BET1 CAPZA2 GPI-FOLR1 COPG2 COG5 SPTBN1 ARF4 ARCN1 DCTN1 RAB1A PalmC-YKT6 RAB1:GTP:GBF1:USO1:ARF:GDPBET1LGOSR1 ERGIC-to-cis-GolgicargoGPI-FOLR1 KDELR2 DYNC1I1 STX5 GPI-FOLR1 TMED2 SPTBN4 ARFGAP3 SPTBN1 RAB1B COPG1 KDELR1 CAPZA3 6xHC-INS(25-110) TMED2 COG3 COPG1 GDP ANK1 COG8 COPB2 GOLGB1 SPTAN1 NSF TMEM115 TMED9 GOLGA2:GORASP1CAPZA3 COPB1 STX5 GOSR1ADPRAB1A SPTBN4 RAB1A ANK3 SPTAN1 DCTN2 ACTR1A ARF1 SPTBN5 RAB1B ARF5 ANK3 DYNC1LI2 RAB1:GTP:GBF1:USO1:ARF:GTP:coatomer:ARFGAP1,2,3:PalmC-YKT6:p24 dimers:cargo:spectrin:ankyrinUSO1 TMED10 PalmC-YKT6RAB1B ACTR10 GBF1 COPZ1 COPA SPTA1 BET1 GPI-CD59 RAB1B COPE COPB1 cis-SNARE:3xSNAP:NSFhexamerTMEM115 DYNLL1 COPZ2 SPTBN5 GORASP1 SPTAN1 COPZ2 COPB1 ARCN1 TMED10 BET1 COG complexDYNLL1 GORASP1 COPE COPZ2 TMED3 RAB1B 6xHC-INS(25-110) TMED9 SPTBN1 ANK3 SPTB GOSR2GPI-CD55 COPG1 TMED7 DCTN6 PiSPTBN4 DYNC1H1 GPI-CD55 CAPZA1 SPTBN2 BET1p24 dimersSPTBN1 ARCN1 COG1 KDELR3 GTP ARF1 6xHC-INS(25-110) GBF1DCTN2 KDELR3 ARFGAP2 COPG2 CAPZB GPI-FOLR1 SNAPscis-Golgi cis SNAREbundleCOPA KDELR2 RAB1A GOSR2 TMED2 DYNC1I2 SPTBN5 BET1 ARF5 COPZ1 TMED9 COPA TMED3 RAB1:GTP:GBF1:USO1:ARF:GTP:coatomerCOPE USO1 ARF3 KDELR3 RAB1:GTP:GBF1:USO1COPA BET1 KDELR2 ARCN1 NAPG GPI-CD59 TMED7 ARF5 TMED9 ARFGAP1 SPTBN2 GPI-CD59 ANK2 TMED2 GPI-CD59 TMED7 BET1L COG7 GTP CAPZA2 SPTB PalmC-YKT6 USO1 GOSR1 GTP 6xHC-INS(25-110) KDELR2 DCTN1 GOLGA2 USO1 SPTAN1 RAB1A ARF4 SPTA1 USO1 6xHC-INS(25-110) SPTBN1 USO1 PalmC-YKT6 ANK3 DYNC1I1 COPZ1 ARF1 SPTB TMED3 STX5 ARF5 KDELR1 KDELR3 COPB2 COPZ1 NAPG ARF1 DYNC1LI1 COG4 TMED3 NAPA GPI-FOLR1 GTP SPTA1 RAB1A RAB1B COPE COPG2 ARF4 GTP GTP ARF3 RAB1B RAB1B COPZ1 COPB1 AnkyrinCOG7 NAPB ATPCOPE ERGIC-to-cis-GolgicargoTMED9 GBF1 RAB1:GTP:USO1:coatomer:PalmC-YKT6:p24 dimers:cargo:spectrin:anykrinGTP SPTA1 SPTBN5 GTP ARCN1 KDELR2 SPTBN2 GPI-CD55 KDELR1 ARF3 SPTA1 ARFGAP3 DYNC1LI2 COPZ1 GOSR1 DYNC1I2 GPI-CD55 ANK3 TMED10 ANK1 KDELR1 ARFGAP1 SPTBN1 ANK2 COPG1 DCTN4 KDELR3 BET1L PalmC-YKT6 KDELR1 USO1 KDELR1 COPZ2 ARCN1 SPTB TMEM115COPB2 COG2 ARFGAP2 COPB1 COG4 TMED10 RAB1:GDPp24 dimersSPTBN5 GPI-FOLR1 RAB1A SPTB COG7 RAB1A COG6 SPTAN1 ARCN1 COG8 GDP COPG1 PalmC-YKT6 DCTN3 GBF1 SPTB TMED10 COG3 COPB2 Microtubule protofilament GPI-CD59 ANK3 TMED10 TMED7 ANK2 GOSR2 COPZ2 ANK2 PalmC-YKT6 PalmC-YKT6 RAB1B TMED10 COPG2 COG3 SPTAN1 RAB1B GBF1 TMED3 TMED7 RAB1B KDELR3 NAPB GOSR2 GTP RAB1:GTP:GBF1:USO1:ARF:GTPRAB1A RAB1:GTP:USO1:coatomer:p24 dimers:cargo:spectrin:ankyrin:COG complex:GOLGA2:GORASP1:TMEM115:cis-SNARE complexTMED2 ARF1 RAB1A ARF4 TMED10 ACTR1A COPE COPB2 USO1 DYNC1LI1 BET1 GPI-CD55 COG4 DYNLL2 DCTN6 BET1 GBF1 GPI-CD59 STX5BET1L CAPZB RAB1:GTP:USO1:coatomer:PalmC-YKT6:p24 dimers:cargo:spectrin:anykrin:COG complex:GOLGA2:GORASP1:GOLGB1:TMEM115USO1 COPZ2 GORASP1 SPTBN5 39393939393939


Description

The ERGIC (ER-to-Golgi intermediate compartment, also known as vesicular-tubular clusters, VTCs) is a stable, biochemically distinct compartment located adjacent to ER exit sites (Ben-Tekaya et al, 2005; reviewed in Szul and Sztul, 2011). The ERGIC concentrates COPII-derived cargo from the ER for further anterograde transport to the cis-Golgi and also recycles resident ER proteins back to the ER through retrograde traffic. Both of these pathways appear to make use of microtubule-directed COPI-coated vesicles (Pepperkok et al, 1993; Presley et al, 1997; Scales et al, 1997; Stephens and Pepperkok, 2002; Stephens et al, 2000; reviewed in Lord et al, 2001; Spang et al, 2013). View original pathway at:Reactome.

Comments

Reactome-Converter 
Pathway is converted from Reactome ID: 6807878
Reactome-version 
Reactome version: 65
Reactome Author 
Reactome Author: Rothfels, Karen

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Waters MG, Serafini T, Rothman JE.; '''Coatomer': a cytosolic protein complex containing subunits of non-clathrin-coated Golgi transport vesicles.''; PubMed Europe PMC
  2. Palmer DJ, Helms JB, Beckers CJ, Orci L, Rothman JE.; ''Binding of coatomer to Golgi membranes requires ADP-ribosylation factor.''; PubMed Europe PMC
  3. Yu RC, Jahn R, Brunger AT.; ''NSF N-terminal domain crystal structure: models of NSF function.''; PubMed Europe PMC
  4. Söllner T, Bennett MK, Whiteheart SW, Scheller RH, Rothman JE.; ''A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion.''; PubMed Europe PMC
  5. Muller JM, Shorter J, Newman R, Deinhardt K, Sagiv Y, Elazar Z, Warren G, Shima DT.; ''Sequential SNARE disassembly and GATE-16-GOS-28 complex assembly mediated by distinct NSF activities drives Golgi membrane fusion.''; PubMed Europe PMC
  6. Bremser M, Nickel W, Schweikert M, Ravazzola M, Amherdt M, Hughes CA, Söllner TH, Rothman JE, Wieland FT.; ''Coupling of coat assembly and vesicle budding to packaging of putative cargo receptors.''; PubMed Europe PMC
  7. Linstedt AD, Hauri HP.; ''Giantin, a novel conserved Golgi membrane protein containing a cytoplasmic domain of at least 350 kDa.''; PubMed Europe PMC
  8. Volchuk A, Ravazzola M, Perrelet A, Eng WS, Di Liberto M, Varlamov O, Fukasawa M, Engel T, Söllner TH, Rothman JE, Orci L.; ''Countercurrent distribution of two distinct SNARE complexes mediating transport within the Golgi stack.''; PubMed Europe PMC
  9. Szul T, Sztul E.; ''COPII and COPI traffic at the ER-Golgi interface.''; PubMed Europe PMC
  10. Sönnichsen B, Lowe M, Levine T, Jämsä E, Dirac-Svejstrup B, Warren G.; ''A role for giantin in docking COPI vesicles to Golgi membranes.''; PubMed Europe PMC
  11. Zhao C, Smith EC, Whiteheart SW.; ''Requirements for the catalytic cycle of the N-ethylmaleimide-Sensitive Factor (NSF).''; PubMed Europe PMC
  12. Jahn R, Scheller RH.; ''SNAREs--engines for membrane fusion.''; PubMed Europe PMC
  13. Niu TK, Pfeifer AC, Lippincott-Schwartz J, Jackson CL.; ''Dynamics of GBF1, a Brefeldin A-sensitive Arf1 exchange factor at the Golgi.''; PubMed Europe PMC
  14. Beard M, Satoh A, Shorter J, Warren G.; ''A cryptic Rab1-binding site in the p115 tethering protein.''; PubMed Europe PMC
  15. Zolov SN, Lupashin VV.; ''Cog3p depletion blocks vesicle-mediated Golgi retrograde trafficking in HeLa cells.''; PubMed Europe PMC
  16. Bigay J, Gounon P, Robineau S, Antonny B.; ''Lipid packing sensed by ArfGAP1 couples COPI coat disassembly to membrane bilayer curvature.''; PubMed Europe PMC
  17. Aguilera-Romero A, Kaminska J, Spang A, Riezman H, Muñiz M.; ''The yeast p24 complex is required for the formation of COPI retrograde transport vesicles from the Golgi apparatus.''; PubMed Europe PMC
  18. Schuiki I, Volchuk A.; ''Diverse roles for the p24 family of proteins in eukaryotic cells.''; PubMed Europe PMC
  19. Wang H, Kazanietz MG.; ''Chimaerins, novel non-protein kinase C phorbol ester receptors, associate with Tmp21-I (p23): evidence for a novel anchoring mechanism involving the chimaerin C1 domain.''; PubMed Europe PMC
  20. Sun Z, Anderl F, Fröhlich K, Zhao L, Hanke S, Brügger B, Wieland F, Béthune J.; ''Multiple and stepwise interactions between coatomer and ADP-ribosylation factor-1 (Arf1)-GTP.''; PubMed Europe PMC
  21. Beck R, Rawet M, Wieland FT, Cassel D.; ''The COPI system: molecular mechanisms and function.''; PubMed Europe PMC
  22. Lanoix J, Ouwendijk J, Stark A, Szafer E, Cassel D, Dejgaard K, Weiss M, Nilsson T.; ''Sorting of Golgi resident proteins into different subpopulations of COPI vesicles: a role for ArfGAP1.''; PubMed Europe PMC
  23. Holleran EA, Tokito MK, Karki S, Holzbaur EL.; ''Centractin (ARP1) associates with spectrin revealing a potential mechanism to link dynactin to intracellular organelles.''; PubMed Europe PMC
  24. Donaldson JG, Kahn RA, Lippincott-Schwartz J, Klausner RD.; ''Binding of ARF and beta-COP to Golgi membranes: possible regulation by a trimeric G protein.''; PubMed Europe PMC
  25. Gommel DU, Memon AR, Heiss A, Lottspeich F, Pfannstiel J, Lechner J, Reinhard C, Helms JB, Nickel W, Wieland FT.; ''Recruitment to Golgi membranes of ADP-ribosylation factor 1 is mediated by the cytoplasmic domain of p23.''; PubMed Europe PMC
  26. Kawamoto K, Yoshida Y, Tamaki H, Torii S, Shinotsuka C, Yamashina S, Nakayama K.; ''GBF1, a guanine nucleotide exchange factor for ADP-ribosylation factors, is localized to the cis-Golgi and involved in membrane association of the COPI coat.''; PubMed Europe PMC
  27. Goldberg J.; ''Decoding of sorting signals by coatomer through a GTPase switch in the COPI coat complex.''; PubMed Europe PMC
  28. Eugster A, Frigerio G, Dale M, Duden R.; ''COP I domains required for coatomer integrity, and novel interactions with ARF and ARF-GAP.''; PubMed Europe PMC
  29. Kahn RA, Bruford E, Inoue H, Logsdon JM, Nie Z, Premont RT, Randazzo PA, Satake M, Theibert AB, Zapp ML, Cassel D.; ''Consensus nomenclature for the human ArfGAP domain-containing proteins.''; PubMed Europe PMC
  30. Zhao L, Helms JB, Brügger B, Harter C, Martoglio B, Graf R, Brunner J, Wieland FT.; ''Direct and GTP-dependent interaction of ADP ribosylation factor 1 with coatomer subunit beta.''; PubMed Europe PMC
  31. García-Mata R, Sztul E.; ''The membrane-tethering protein p115 interacts with GBF1, an ARF guanine-nucleotide-exchange factor.''; PubMed Europe PMC
  32. Kliouchnikov L, Bigay J, Mesmin B, Parnis A, Rawet M, Goldfeder N, Antonny B, Cassel D.; ''Discrete determinants in ArfGAP2/3 conferring Golgi localization and regulation by the COPI coat.''; PubMed Europe PMC
  33. Bonnon C, Wendeler MW, Paccaud JP, Hauri HP.; ''Selective export of human GPI-anchored proteins from the endoplasmic reticulum.''; PubMed Europe PMC
  34. Devarajan P, Stabach PR, De Matteis MA, Morrow JS.; ''Na,K-ATPase transport from endoplasmic reticulum to Golgi requires the Golgi spectrin-ankyrin G119 skeleton in Madin Darby canine kidney cells.''; PubMed Europe PMC
  35. Shah N, Colbert KN, Enos MD, Herschlag D, Weis WI.; ''Three αSNAP and 10 ATP molecules are used in SNARE complex disassembly by N-ethylmaleimide-sensitive factor (NSF).''; PubMed Europe PMC
  36. Stephens DJ, Lin-Marq N, Pagano A, Pepperkok R, Paccaud JP.; ''COPI-coated ER-to-Golgi transport complexes segregate from COPII in close proximity to ER exit sites.''; PubMed Europe PMC
  37. Ong YS, Tran TH, Gounko NV, Hong W.; ''TMEM115 is an integral membrane protein of the Golgi complex involved in retrograde transport.''; PubMed Europe PMC
  38. Serafini T, Orci L, Amherdt M, Brunner M, Kahn RA, Rothman JE.; ''ADP-ribosylation factor is a subunit of the coat of Golgi-derived COP-coated vesicles: a novel role for a GTP-binding protein.''; PubMed Europe PMC
  39. Szul T, Grabski R, Lyons S, Morohashi Y, Shestopal S, Lowe M, Sztul E.; ''Dissecting the role of the ARF guanine nucleotide exchange factor GBF1 in Golgi biogenesis and protein trafficking.''; PubMed Europe PMC
  40. Alvarez C, Garcia-Mata R, Hauri HP, Sztul E.; ''The p115-interactive proteins GM130 and giantin participate in endoplasmic reticulum-Golgi traffic.''; PubMed Europe PMC
  41. Scales SJ, Pepperkok R, Kreis TE.; ''Visualization of ER-to-Golgi transport in living cells reveals a sequential mode of action for COPII and COPI.''; PubMed Europe PMC
  42. Chun J, Shapovalova Z, Dejgaard SY, Presley JF, Melançon P.; ''Characterization of class I and II ADP-ribosylation factors (Arfs) in live cells: GDP-bound class II Arfs associate with the ER-Golgi intermediate compartment independently of GBF1.''; PubMed Europe PMC
  43. D'Souza-Schorey C, Chavrier P.; ''ARF proteins: roles in membrane traffic and beyond.''; PubMed Europe PMC
  44. Manolea F, Chun J, Chen DW, Clarke I, Summerfeldt N, Dacks JB, Melançon P.; ''Arf3 is activated uniquely at the trans-Golgi network by brefeldin A-inhibited guanine nucleotide exchange factors.''; PubMed Europe PMC
  45. Willett R, Ungar D, Lupashin V.; ''The Golgi puppet master: COG complex at center stage of membrane trafficking interactions.''; PubMed Europe PMC
  46. Sohda M, Misumi Y, Yoshimura S, Nakamura N, Fusano T, Ogata S, Sakisaka S, Ikehara Y.; ''The interaction of two tethering factors, p115 and COG complex, is required for Golgi integrity.''; PubMed Europe PMC
  47. Weide T, Bayer M, Köster M, Siebrasse JP, Peters R, Barnekow A.; ''The Golgi matrix protein GM130: a specific interacting partner of the small GTPase rab1b.''; PubMed Europe PMC
  48. Hara-Kuge S, Kuge O, Orci L, Amherdt M, Ravazzola M, Wieland FT, Rothman JE.; ''En bloc incorporation of coatomer subunits during the assembly of COP-coated vesicles.''; PubMed Europe PMC
  49. Nagahama M, Orci L, Ravazzola M, Amherdt M, Lacomis L, Tempst P, Rothman JE, Söllner TH.; ''A v-SNARE implicated in intra-Golgi transport.''; PubMed Europe PMC
  50. Godi A, Santone I, Pertile P, Devarajan P, Stabach PR, Morrow JS, Di Tullio G, Polishchuk R, Petrucci TC, Luini A, De Matteis MA.; ''ADP ribosylation factor regulates spectrin binding to the Golgi complex.''; PubMed Europe PMC
  51. Presley JF, Cole NB, Schroer TA, Hirschberg K, Zaal KJ, Lippincott-Schwartz J.; ''ER-to-Golgi transport visualized in living cells.''; PubMed Europe PMC
  52. Zhang T, Wong SH, Tang BL, Xu Y, Peter F, Subramaniam VN, Hong W.; ''The mammalian protein (rbet1) homologous to yeast Bet1p is primarily associated with the pre-Golgi intermediate compartment and is involved in vesicular transport from the endoplasmic reticulum to the Golgi apparatus.''; PubMed Europe PMC
  53. Liu X, Zhang C, Xing G, Chen Q, He F.; ''Functional characterization of novel human ARFGAP3.''; PubMed Europe PMC
  54. Cosson P, Letourneur F.; ''Coatomer interaction with di-lysine endoplasmic reticulum retention motifs.''; PubMed Europe PMC
  55. Nakamura N, Lowe M, Levine TP, Rabouille C, Warren G.; ''The vesicle docking protein p115 binds GM130, a cis-Golgi matrix protein, in a mitotically regulated manner.''; PubMed Europe PMC
  56. Donaldson JG, Cassel D, Kahn RA, Klausner RD.; ''ADP-ribosylation factor, a small GTP-binding protein, is required for binding of the coatomer protein beta-COP to Golgi membranes.''; PubMed Europe PMC
  57. Mesmin B, Drin G, Levi S, Rawet M, Cassel D, Bigay J, Antonny B.; ''Two lipid-packing sensor motifs contribute to the sensitivity of ArfGAP1 to membrane curvature.''; PubMed Europe PMC
  58. Mayer A, Wickner W, Haas A.; ''Sec18p (NSF)-driven release of Sec17p (alpha-SNAP) can precede docking and fusion of yeast vacuoles.''; PubMed Europe PMC
  59. East MP, Kahn RA.; ''Models for the functions of Arf GAPs.''; PubMed Europe PMC
  60. Shestakova A, Suvorova E, Pavliv O, Khaidakova G, Lupashin V.; ''Interaction of the conserved oligomeric Golgi complex with t-SNARE Syntaxin5a/Sed5 enhances intra-Golgi SNARE complex stability.''; PubMed Europe PMC
  61. Zhao L, Helms JB, Brunner J, Wieland FT.; ''GTP-dependent binding of ADP-ribosylation factor to coatomer in close proximity to the binding site for dilysine retrieval motifs and p23.''; PubMed Europe PMC
  62. Weimer C, Beck R, Eckert P, Reckmann I, Moelleken J, Brügger B, Wieland F.; ''Differential roles of ArfGAP1, ArfGAP2, and ArfGAP3 in COPI trafficking.''; PubMed Europe PMC
  63. Whiteheart SW, Matveeva EA.; ''Multiple binding proteins suggest diverse functions for the N-ethylmaleimide sensitive factor.''; PubMed Europe PMC
  64. Volpicelli-Daley LA, Li Y, Zhang CJ, Kahn RA.; ''Isoform-selective effects of the depletion of ADP-ribosylation factors 1-5 on membrane traffic.''; PubMed Europe PMC
  65. Lord C, Ferro-Novick S, Miller EA.; ''The highly conserved COPII coat complex sorts cargo from the endoplasmic reticulum and targets it to the golgi.''; PubMed Europe PMC
  66. Letourneur F, Gaynor EC, Hennecke S, Démollière C, Duden R, Emr SD, Riezman H, Cosson P.; ''Coatomer is essential for retrieval of dilysine-tagged proteins to the endoplasmic reticulum.''; PubMed Europe PMC
  67. Appenzeller-Herzog C, Hauri HP.; ''The ER-Golgi intermediate compartment (ERGIC): in search of its identity and function.''; PubMed Europe PMC
  68. Tanigawa G, Orci L, Amherdt M, Ravazzola M, Helms JB, Rothman JE.; ''Hydrolysis of bound GTP by ARF protein triggers uncoating of Golgi-derived COP-coated vesicles.''; PubMed Europe PMC
  69. Müller JM, Rabouille C, Newman R, Shorter J, Freemont P, Schiavo G, Warren G, Shima DT.; ''An NSF function distinct from ATPase-dependent SNARE disassembly is essential for Golgi membrane fusion.''; PubMed Europe PMC
  70. Xu Y, Martin S, James DE, Hong W.; ''GS15 forms a SNARE complex with syntaxin 5, GS28, and Ykt6 and is implicated in traffic in the early cisternae of the Golgi apparatus.''; PubMed Europe PMC
  71. Spang A.; ''Retrograde traffic from the Golgi to the endoplasmic reticulum.''; PubMed Europe PMC
  72. Zhao X, Claude A, Chun J, Shields DJ, Presley JF, Melançon P.; ''GBF1, a cis-Golgi and VTCs-localized ARF-GEF, is implicated in ER-to-Golgi protein traffic.''; PubMed Europe PMC
  73. Yu X, Breitman M, Goldberg J.; ''A structure-based mechanism for Arf1-dependent recruitment of coatomer to membranes.''; PubMed Europe PMC
  74. Béthune J, Kol M, Hoffmann J, Reckmann I, Brügger B, Wieland F.; ''Coatomer, the coat protein of COPI transport vesicles, discriminates endoplasmic reticulum residents from p24 proteins.''; PubMed Europe PMC
  75. Holleran EA, Ligon LA, Tokito M, Stankewich MC, Morrow JS, Holzbaur EL.; ''beta III spectrin binds to the Arp1 subunit of dynactin.''; PubMed Europe PMC
  76. Hong W, Lev S.; ''Tethering the assembly of SNARE complexes.''; PubMed Europe PMC
  77. Seemann J, Jokitalo EJ, Warren G.; ''The role of the tethering proteins p115 and GM130 in transport through the Golgi apparatus in vivo.''; PubMed Europe PMC
  78. Buechling T, Chaudhary V, Spirohn K, Weiss M, Boutros M.; ''p24 proteins are required for secretion of Wnt ligands.''; PubMed Europe PMC
  79. Majoul I, Straub M, Hell SW, Duden R, Söling HD.; ''KDEL-cargo regulates interactions between proteins involved in COPI vesicle traffic: measurements in living cells using FRET.''; PubMed Europe PMC
  80. Monetta P, Slavin I, Romero N, Alvarez C.; ''Rab1b interacts with GBF1 and modulates both ARF1 dynamics and COPI association.''; PubMed Europe PMC
  81. Luo W, Wang Y, Reiser G.; ''Proteinase-activated receptors, nucleotide P2Y receptors, and μ-opioid receptor-1B are under the control of the type I transmembrane proteins p23 and p24A in post-Golgi trafficking.''; PubMed Europe PMC
  82. Aoe T, Cukierman E, Lee A, Cassel D, Peters PJ, Hsu VW.; ''The KDEL receptor, ERD2, regulates intracellular traffic by recruiting a GTPase-activating protein for ARF1.''; PubMed Europe PMC
  83. Langer JD, Roth CM, Béthune J, Stoops EH, Brügger B, Herten DP, Wieland FT.; ''A conformational change in the alpha-subunit of coatomer induced by ligand binding to gamma-COP revealed by single-pair FRET.''; PubMed Europe PMC
  84. Harter C, Wieland FT.; ''A single binding site for dilysine retrieval motifs and p23 within the gamma subunit of coatomer.''; PubMed Europe PMC
  85. Zink S, Wenzel D, Wurm CA, Schmitt HD.; ''A link between ER tethering and COP-I vesicle uncoating.''; PubMed Europe PMC
  86. Szul T, Garcia-Mata R, Brandon E, Shestopal S, Alvarez C, Sztul E.; ''Dissection of membrane dynamics of the ARF-guanine nucleotide exchange factor GBF1.''; PubMed Europe PMC
  87. Reinhard C, Harter C, Bremser M, Brügger B, Sohn K, Helms JB, Wieland F.; ''Receptor-induced polymerization of coatomer.''; PubMed Europe PMC
  88. Allan BB, Moyer BD, Balch WE.; ''Rab1 recruitment of p115 into a cis-SNARE complex: programming budding COPII vesicles for fusion.''; PubMed Europe PMC
  89. Moyer BD, Allan BB, Balch WE.; ''Rab1 interaction with a GM130 effector complex regulates COPII vesicle cis--Golgi tethering.''; PubMed Europe PMC
  90. Popoff V, Adolf F, Brügger B, Wieland F.; ''COPI budding within the Golgi stack.''; PubMed Europe PMC
  91. Südhof TC, Rothman JE.; ''Membrane fusion: grappling with SNARE and SM proteins.''; PubMed Europe PMC
  92. Ben-Tekaya H, Miura K, Pepperkok R, Hauri HP.; ''Live imaging of bidirectional traffic from the ERGIC.''; PubMed Europe PMC
  93. Pepperkok R, Scheel J, Horstmann H, Hauri HP, Griffiths G, Kreis TE.; ''Beta-COP is essential for biosynthetic membrane transport from the endoplasmic reticulum to the Golgi complex in vivo.''; PubMed Europe PMC
  94. Moelleken J, Malsam J, Betts MJ, Movafeghi A, Reckmann I, Meissner I, Hellwig A, Russell RB, Russell RB, Söllner T, Brügger B, Wieland FT.; ''Differential localization of coatomer complex isoforms within the Golgi apparatus.''; PubMed Europe PMC
  95. Luo R, Ha VL, Hayashi R, Randazzo PA.; ''Arf GAP2 is positively regulated by coatomer and cargo.''; PubMed Europe PMC
  96. Otto H, Hanson PI, Jahn R.; ''Assembly and disassembly of a ternary complex of synaptobrevin, syntaxin, and SNAP-25 in the membrane of synaptic vesicles.''; PubMed Europe PMC
  97. Frigerio G, Grimsey N, Dale M, Majoul I, Duden R.; ''Two human ARFGAPs associated with COP-I-coated vesicles.''; PubMed Europe PMC
  98. Takida S, Maeda Y, Kinoshita T.; ''Mammalian GPI-anchored proteins require p24 proteins for their efficient transport from the ER to the plasma membrane.''; PubMed Europe PMC
  99. Orci L, Stamnes M, Ravazzola M, Amherdt M, Perrelet A, Söllner TH, Rothman JE.; ''Bidirectional transport by distinct populations of COPI-coated vesicles.''; PubMed Europe PMC

History

CompareRevisionActionTimeUserComment
101690view14:18, 1 November 2018DeSlOntology Term : 'transport pathway' added !
101530view11:40, 1 November 2018ReactomeTeamreactome version 66
101065view21:22, 31 October 2018ReactomeTeamreactome version 65
100729view20:11, 31 October 2018ReactomeTeamNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
6xHC-INS(25-110) ProteinP01308 (Uniprot-TrEMBL)
ACTR10 ProteinQ9NZ32 (Uniprot-TrEMBL)
ACTR1A ProteinP61163 (Uniprot-TrEMBL)
ADPMetaboliteCHEBI:16761 (ChEBI)
ANK1 ProteinP16157 (Uniprot-TrEMBL)
ANK2 ProteinQ01484 (Uniprot-TrEMBL)
ANK3 ProteinQ12955 (Uniprot-TrEMBL)
ARCN1 ProteinP48444 (Uniprot-TrEMBL)
ARF1 ProteinP84077 (Uniprot-TrEMBL)
ARF3 ProteinP61204 (Uniprot-TrEMBL)
ARF4 ProteinP18085 (Uniprot-TrEMBL)
ARF5 ProteinP84085 (Uniprot-TrEMBL)
ARF:GDPComplexR-HSA-6807786 (Reactome)
ARFGAP1 ProteinQ8N6T3 (Uniprot-TrEMBL)
ARFGAP1,2,3ComplexR-HSA-6807832 (Reactome)
ARFGAP2 ProteinQ8N6H7 (Uniprot-TrEMBL)
ARFGAP3 ProteinQ9NP61 (Uniprot-TrEMBL)
ATPMetaboliteCHEBI:15422 (ChEBI)
AnkyrinComplexR-HSA-427190 (Reactome)
BET1 ProteinO15155 (Uniprot-TrEMBL)
BET1L ProteinQ9NYM9 (Uniprot-TrEMBL)
BET1LProteinQ9NYM9 (Uniprot-TrEMBL)
BET1ProteinO15155 (Uniprot-TrEMBL)
CAPZA1 ProteinP52907 (Uniprot-TrEMBL)
CAPZA2 ProteinP47755 (Uniprot-TrEMBL)
CAPZA3 ProteinQ96KX2 (Uniprot-TrEMBL)
CAPZB ProteinP47756 (Uniprot-TrEMBL)
COG complexComplexR-HSA-6808819 (Reactome)
COG1 ProteinQ8WTW3 (Uniprot-TrEMBL)
COG2 ProteinQ14746 (Uniprot-TrEMBL)
COG3 ProteinQ96JB2 (Uniprot-TrEMBL)
COG4 ProteinQ9H9E3 (Uniprot-TrEMBL)
COG5 ProteinQ9UP83 (Uniprot-TrEMBL)
COG6 ProteinQ9Y2V7 (Uniprot-TrEMBL)
COG7 ProteinP83436 (Uniprot-TrEMBL)
COG8 ProteinQ96MW5 (Uniprot-TrEMBL)
COPA ProteinP53621 (Uniprot-TrEMBL)
COPB1 ProteinP53618 (Uniprot-TrEMBL)
COPB2 ProteinP35606 (Uniprot-TrEMBL)
COPE ProteinO14579 (Uniprot-TrEMBL)
COPG1 ProteinQ9Y678 (Uniprot-TrEMBL)
COPG2 ProteinQ9UBF2 (Uniprot-TrEMBL)
COPZ1 ProteinP61923 (Uniprot-TrEMBL)
COPZ2 ProteinQ9P299 (Uniprot-TrEMBL)
DCTN1 ProteinQ14203 (Uniprot-TrEMBL)
DCTN2 ProteinQ13561 (Uniprot-TrEMBL)
DCTN3 ProteinO75935 (Uniprot-TrEMBL)
DCTN4 ProteinQ9UJW0 (Uniprot-TrEMBL)
DCTN5 ProteinQ9BTE1 (Uniprot-TrEMBL)
DCTN6 ProteinO00399 (Uniprot-TrEMBL)
DYNC1H1 ProteinQ14204 (Uniprot-TrEMBL)
DYNC1I1 ProteinO14576 (Uniprot-TrEMBL)
DYNC1I2 ProteinQ13409 (Uniprot-TrEMBL)
DYNC1LI1 ProteinQ9Y6G9 (Uniprot-TrEMBL)
DYNC1LI2 ProteinO43237 (Uniprot-TrEMBL)
DYNLL1 ProteinP63167 (Uniprot-TrEMBL)
DYNLL2 ProteinQ96FJ2 (Uniprot-TrEMBL)
Dynein:Dynactin:microtubuleComplexR-HSA-2029135 (Reactome)
ERGIC-to-cis-Golgi cargoComplexR-HSA-6807816 (Reactome)
ERGIC-to-cis-Golgi cargoComplexR-HSA-6808909 (Reactome)
GBF1 ProteinQ92538 (Uniprot-TrEMBL)
GBF1ProteinQ92538 (Uniprot-TrEMBL)
GDP MetaboliteCHEBI:17552 (ChEBI)
GOLGA2 ProteinQ08379 (Uniprot-TrEMBL)
GOLGA2:GORASP1ComplexR-HSA-6808820 (Reactome)
GOLGB1 ProteinQ14789 (Uniprot-TrEMBL)
GOLGB1 homodimerComplexR-HSA-6810505 (Reactome)
GORASP1 ProteinQ9BQQ3 (Uniprot-TrEMBL)
GOSR1 ProteinO95249 (Uniprot-TrEMBL)
GOSR1ProteinO95249 (Uniprot-TrEMBL)
GOSR2 ProteinO14653 (Uniprot-TrEMBL)
GOSR2ProteinO14653 (Uniprot-TrEMBL)
GPI-CD55 ProteinP08174 (Uniprot-TrEMBL)
GPI-CD59 ProteinP13987 (Uniprot-TrEMBL)
GPI-FOLR1 ProteinP15328 (Uniprot-TrEMBL)
GTP MetaboliteCHEBI:15996 (ChEBI)
KDELR1 ProteinP24390 (Uniprot-TrEMBL)
KDELR2 ProteinP33947 (Uniprot-TrEMBL)
KDELR3 ProteinO43731 (Uniprot-TrEMBL)
Microtubule protofilament R-HSA-8982424 (Reactome)
NAPA ProteinP54920 (Uniprot-TrEMBL)
NAPB ProteinQ9H115 (Uniprot-TrEMBL)
NAPG ProteinQ99747 (Uniprot-TrEMBL)
NSF ProteinP46459 (Uniprot-TrEMBL)
NSF hexamerComplexR-HSA-2193131 (Reactome)
PalmC-YKT6 ProteinO15498 (Uniprot-TrEMBL)
PalmC-YKT6ProteinO15498 (Uniprot-TrEMBL)
PiMetaboliteCHEBI:18367 (ChEBI)
RAB1:GDPComplexR-HSA-5694296 (Reactome)
RAB1:GTP:GBF1:USO1:ARF:GDPComplexR-HSA-6807803 (Reactome)
RAB1:GTP:GBF1:USO1:ARF:GTP:coatomer:ARFGAP1,2,3:PalmC-YKT6:p24 dimers:cargo:spectrin:ankyrinComplexR-HSA-6807825 (Reactome)
RAB1:GTP:GBF1:USO1:ARF:GTP:coatomerComplexR-HSA-6807822 (Reactome)
RAB1:GTP:GBF1:USO1:ARF:GTPComplexR-HSA-6807820 (Reactome)
RAB1:GTP:GBF1:USO1ComplexR-HSA-6807800 (Reactome)
RAB1:GTP:USO1 coatomer:PalmC-YKT6:p24 dimers:cargo:anykrin:spectrin:dynein:dynactin:microtubulesComplexR-HSA-6808904 (Reactome)
RAB1:GTP:USO1:coatomer:PalmC-YKT6:p24 dimers:cargo:spectrin:anykrin:COG complex:GOLGA2:GORASP1:GOLGB1:TMEM115ComplexR-HSA-6808912 (Reactome)
RAB1:GTP:USO1:coatomer:PalmC-YKT6:p24 dimers:cargo:spectrin:anykrinComplexR-HSA-6808903 (Reactome)
RAB1:GTP:USO1:coatomer:p24 dimers:cargo:spectrin:ankyrin:COG complex:GOLGA2:GORASP1:TMEM115:cis-SNARE complexComplexR-HSA-6808913 (Reactome)
RAB1:GTPComplexR-HSA-6807799 (Reactome)
RAB1A ProteinP62820 (Uniprot-TrEMBL)
RAB1B ProteinQ9H0U4 (Uniprot-TrEMBL)
SNAPsComplexR-HSA-5694313 (Reactome)
SPTA1 ProteinP02549 (Uniprot-TrEMBL)
SPTAN1 ProteinQ13813 (Uniprot-TrEMBL)
SPTB ProteinP11277 (Uniprot-TrEMBL)
SPTBN1 ProteinQ01082 (Uniprot-TrEMBL)
SPTBN2 ProteinO15020 (Uniprot-TrEMBL)
SPTBN4 ProteinQ9H254 (Uniprot-TrEMBL)
SPTBN5 ProteinQ9NRC6 (Uniprot-TrEMBL)
STX5 ProteinQ13190 (Uniprot-TrEMBL)
STX5ProteinQ13190 (Uniprot-TrEMBL)
Spectrin tetramerComplexR-HSA-420053 (Reactome) Spectrin assembles into heterodimers of alpha and beta spectrin, these then associate in a head to tail tetramer arrangement, the beta chains binding an actin filaments at either end of the tetramer. The actin filaments act as nodes for the attachment of several (5 or 6) spectrin tetramers, allowing the formation of a lattice of pentagonal or hexagonal spectrin structures.
TMED10 ProteinP49755 (Uniprot-TrEMBL)
TMED2 ProteinQ15363 (Uniprot-TrEMBL)
TMED3 ProteinQ9Y3Q3 (Uniprot-TrEMBL)
TMED7 ProteinQ9Y3B3 (Uniprot-TrEMBL)
TMED9 ProteinQ9BVK6 (Uniprot-TrEMBL)
TMEM115 ProteinQ12893 (Uniprot-TrEMBL)
TMEM115ProteinQ12893 (Uniprot-TrEMBL)
USO1 ProteinO60763 (Uniprot-TrEMBL)
USO1 homodimerComplexR-HSA-5694302 (Reactome)
cis-Golgi cis SNARE bundleComplexR-HSA-6809000 (Reactome)
cis-Golgi t-SNARESComplexR-HSA-6807834 (Reactome)
cis-SNARE:3xSNAP:NSF hexamerComplexR-HSA-6808999 (Reactome)
coatomerComplexR-HSA-6807805 (Reactome)
p24 dimersComplexR-HSA-6807812 (Reactome)
p24 dimersComplexR-HSA-6808871 (Reactome)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
ADPArrowR-HSA-6807868 (Reactome)
ARF:GDPArrowR-HSA-6807877 (Reactome)
ARF:GDPR-HSA-6807866 (Reactome)
ARFGAP1,2,3ArrowR-HSA-6807877 (Reactome)
ARFGAP1,2,3R-HSA-6807875 (Reactome)
ATPR-HSA-6807868 (Reactome)
ATPR-HSA-6809015 (Reactome)
AnkyrinArrowR-HSA-6809010 (Reactome)
AnkyrinR-HSA-6807875 (Reactome)
BET1ArrowR-HSA-6809015 (Reactome)
BET1LArrowR-HSA-6809015 (Reactome)
COG complexArrowR-HSA-6809010 (Reactome)
COG complexR-HSA-6809006 (Reactome)
Dynein:Dynactin:microtubuleArrowR-HSA-6809006 (Reactome)
Dynein:Dynactin:microtubuleR-HSA-6809003 (Reactome)
ERGIC-to-cis-Golgi cargoArrowR-HSA-6809010 (Reactome)
ERGIC-to-cis-Golgi cargoR-HSA-6807875 (Reactome)
GBF1ArrowR-HSA-6807877 (Reactome)
GBF1R-HSA-6807864 (Reactome)
GOLGA2:GORASP1ArrowR-HSA-6809010 (Reactome)
GOLGA2:GORASP1R-HSA-6809006 (Reactome)
GOLGB1 homodimerArrowR-HSA-6809010 (Reactome)
GOLGB1 homodimerR-HSA-6809006 (Reactome)
GOSR1ArrowR-HSA-6809015 (Reactome)
GOSR2ArrowR-HSA-6809015 (Reactome)
NSF hexamerR-HSA-6809014 (Reactome)
PalmC-YKT6ArrowR-HSA-6809015 (Reactome)
PalmC-YKT6R-HSA-6807875 (Reactome)
PiArrowR-HSA-6809015 (Reactome)
R-HSA-6807864 (Reactome) In its GTP-bound active state, RAB1 recruits the ARF GEF GBF1 to the ERGIC (Monetta et al, 2007). GBF1 is the only ARF activator required for the formation of COPI coats, and it therefore has roles in the anterograde ERGIC-to-cis-Golgi pathway as well as in COPI-mediated retrograde transport within the Golgi and back to the ERGIC and ER (Kawamoto et al, 2002; Szul et al, 2005; Zhao et al, 2006; Szul et al, 2007; reviewed in Szul and Sztul, 2011). GBF1 activates ARF4 which is concentrated at the ERGIC compartment, but also ARF1 and ARF5 which have more generalized localization within the secretory pathway (Volpicelli-Daley et al, 2005; Chun et al, 2008; reviewed in D'Souza-Schorey and Chavrier, 2006). GBF1 also interacts with the USO1 homodimer, a long coiled-coil tethering factor (Garcia-Mata and Sztul, 2003).
R-HSA-6807866 (Reactome) GBF1 recruits inactive ARF:GDP complexes to the ERGIC (Monetta et al, 2007). There are 5 known ADP-ribosylation factor proteins (ARFs) in the human cell. Class I members ARF1 and ARF 3 are expressed at high levels and broadly distributed through the secretory system, while Class II members ARF4 and ARF5 are expressed at lower levels, with ARF4 showing the most specific localization to the ERGIC compartment. ARF6, the single Class III ARF, appears to function more specifically in endocytosis and actin dynamics (Chun et al, 2008; reviewed in D'Souza-Schorey and Chavrier, 2006; Szul and Sztul, 2011). There is conflicting evidence regarding what ARF(s) is required at the ERGIC membrane. GBF1 has been shown to activate ARF1, 4, and 5, but not ARF3, while single and pairwise knockdown of ARF1, 3, 4 and 5 suggests that although no single ARF is responsible for any given step in the secretory pathway, ARF1 and ARF3 contribute most specifically to the ERGIC-Golgi step (Manolea et al, 2010; Volpicelli-Daley et al, 2005). Recruitment of ARF at may also be facilitated by interaction with p24 family members (Gommel et al, 2001; reviewed in Schuiki and Volchuk, 2012).
R-HSA-6807868 (Reactome) GBF1 facilitates the exchange of GDP for GTP, activating ARF (Niu et al, 2005; Szul et al, 2005; Szul et al, 2007; Kawamoto et al, 2002; reviewed in Szul and Sztul, 2011).
R-HSA-6807872 (Reactome) Activation of ARF is tightly linked to the recruitment of the COPI coat (Donaldson et al, 1991; Serafini et al, 1991; Donaldson et el, 1992; Palmer et al, 1993; reveiwed in Szul and Sztul, 2011). Studies in yeast and in mammalian cells support a direct interaction between the GTPase and components of the COPI coat; recruitment may also be facilitated by interactions with p24 family members (Zhao et al, 1997; Zhao et al, 1999; Zhao et al, 2006; Eugster et al, 2000; Aguillera-Ramiero et al, 2008; Sun et al, 2007; Yu et al, 2012; Harter and Wieland, 1998; Bethune et al, 2006; reviewed in Popoff et al, 2011). The COPI coat consists of 7 subunits arranged in 2 subcomplexes. The inner coat is made up of a tetrameric complex consisting of the beta, gamma, zeta and delta COPI subunits, while the outer coat is a trimer consisting of the alpha, beta prime and epsilon subunits (Eugster et al, 2000; Waters et al, 1991). Both of the zeta and gamma subunits have 2 isoforms with different subcellular locations, suggesting that different COPI coats may mediate different steps of the secretory pathway (Moelleken et al, 2007). Unlike the case for COPII or clathrin coats, all components of the COPI coat are recruited simultaneously as a preformed heptameric complex (Hara-Kuge et al, 1994)
R-HSA-6807875 (Reactome) Binding and polymerization of the coatomer (the COPI coat) is coordinated with the incorporation of cargo proteins and Golgi-targeting snares, as well as with recruitment of ARFGAP proteins (Letourneur et al, 1994; Nagahama et al,1996; Bremser et al, 1999).
Typical model cargo for COPI-mediated trafficking includes the viral glycoprotein VSV-G and proinsulin as well as the KDEL receptors, which bind and recycle ER-resident proteins and which themselves must be returned to post-ER compartments (Cosson and Letourner, 1994; Ben-Tekaya et al, 2005; Majoul et al, 2001; Orci et al, 1997, Bremser et al, 1999; Presley et al, 1997; reviewed in Beck et al, 2009).
Other protein components of the COPI vesicle include the p24 family of proteins, which serve diverse roles in the early secretory pathway (reviewed in Schuiki and Volchuk, 2012). Oligomeric p24 proteins interact with ADP-bound ARF and components of the COPI coat, contributing to coatomer recruitment and oligomerization (Gommel et al, 2001; Majoul et al, 2001; Bethune et al, 2006; Harter and Wieland, 1998; Langer et al, 2008; Reinhard et al, 1999). The p24 proteins also act as cargo receptors for various proteins destined for packaging in COPI vesicles; these include GPI-anchored transmembrane proteins, WNT ligands and some G-protein coupled receptors (Takida et al, 2008; Bonnon et al, 2010; Luo et al, 2011; Beuchling et al, 2011; Wang and Kazanietz, 2002; reviewed in Schuiki and Volchuk, 2012). Finally, the p24 proteins contribute to COPI coat disassembly by restricting ARF GTPase activity until cargo has been loaded (Goldberg, 2000; Lanoix et al, 2001).
ARFGAPs are recruited to the budding vesicle through direct interaction with active ARF, the cytoplasmic tails of cargo proteins and with components of the COPI coat (Goldberg, 2000; Majoul et al, 2001; Aoe et al, 1997; Kliouchnikov et al, 2009; Luo et al, 2009). Stimulation of ARF GTPase activity is coordinated with cargo recruitment to ensure that only cargo-loaded vesicles are produced (Goldberg, 2000; Luo et al, 2009).
Mammalian cells have 3 ARFGAPs that appear to be involved in COPI-mediated traffic, ARFGAP1,2 and 3 (Frigerio et al, 2007; Liu et al, 2001; Kahn et al, 2008). ARFGAP1 has a ALPS domain that recognizes membrane curvature and that is required for the GTPase stimulating activity of the protein, suggesting a mechanism for coordinating ARF1-mediated GTP hydrolysis with vesicle formation (Bigay et al, 2003; Mesmin et al, 2007). ARFGAP 2 and 3 do not contain this motif, and their activity is dependent upon interaction with coatomer (Weimar et al 2008; Kliouchnikov et al, 2009; Luo et al, 2009).
Finally, there is evidence that components of the ankyin/spectrin skeleton may be incorporated in the nascent COPI vesicle, acting as a bridge between cargo proteins and the dynein-dynactin complex required for their transport to the Golgi (Devarajan et al, 1997; Godi et al, 1998; Holleran et al, 1996; Holleran et al, 2001).
R-HSA-6807877 (Reactome) The ARFGAP proteins stimulates ARF GTPase activity, promoting the release of the nascent COPI vesicle from the membrane and release of ARF:ADP (Tanigawa et al, 1993; reviewed in Beck et al, 2009; East and Kahn, 2011). Although this reaction shows their dissociation, it is not clear whether ARFGAPs persist on the COPI vesicle after GTP hydrolysis, nor is it known when GBF is released from the nascent COPI vesicle.

R-HSA-6809003 (Reactome) Unlike COPII-mediated traffic from the ER, COPI traffic to the Golgi is microtubule- and dynein-dependent (Scales et al, 1997; Presley et al, 1997; Ben-Tekaya et al, 2005). Recruitment of the dynein:dynactin complex may in turn rely on interaction with the ankyrin-spectrin network, which may contact integral membrane cargo proteins as they are incorporated into nascent COPI vesicles (Devarajan et al, 1997; Godi et al, 1998; Holleran et al, 1996; Holleran et al, 2001). Although not depicted in this reaction, dynein-dependent vesicle transport is energy dependent.
R-HSA-6809006 (Reactome) Vesicles tethering at the cis-Golgi is mediated both by long coiled-coil tethers and by large multisubunit complexes. Vesicle-bound USO1 homodimers associate with the Golgi localized GOLGA2:GORASP1 complex and with the Golgi-localized octameric COG tethering complex (Allan et al, 2000; Moyer et al, 2001; Weide et al, 2001; Nakamura et al, 1997; Seeman et al, 2000; Sohda et al, 2007). GOLGB1 is another Golgi localized tether that may facilitate vesicle tethering at the cis-Golgi, although it is also implicated in intra-Golgi retrograde trafficking (Linstedt and Hauri, 1993; Sonnichsen et al, 1998; Alvarez et al, 2001; Beard et al, 2005; reviewed in Appenzeller-Herzog et al, 2006). In addition to binding to USO1, the COG complex also interacts with components of the COPI coat, as well as with SNARE proteins and the TMEM115 protein (Suvorova et al, 2002; Zolov et al, 2005; Shestakova et al, 2007; Ong et al, 2014; reviewed in Willet et al, 2013).
R-HSA-6809010 (Reactome) The mechanisms of COPI vesicle uncoating are not well established (reviewed in Szul and Sztul, 2011). Coat dissociation may be promoted by changes in protein-protein interactions upon vesicle tethering, as has been suggested for retrograde COPI-traffic to the ER (Zink et al, 2009). After uncoating and membrane fusion, the SNARE complex exists as a four-helix bundle that must be "unzipped" (dissociated) by NSF for reuse, an energetically costly event (reviewed in Hong and Lev, 2014; Sudhof and Rothman, 2009).
R-HSA-6809011 (Reactome) Membrane fusion is mediated by the zippering of a four membered anti-parallel helix bundle formed by the v-SNARE and the three t-SNARES. t-SNARE complexes that are found at the cis-Golgi include STX5:GOSR1:GOSR2, STX5:GOSR1:BET1 and STX5:GOSR1:BET1L among others (Xu et al, 2002; Zhang et al 1997; Volchuk et al, 2004; reviewed in Willet et al, 2014; Szul and Sztul, 2011)
R-HSA-6809014 (Reactome) After membrane fusion, the cis-SNARE complex is dissociated in an ATP-dependent fashion by the AAA protein NSF in conjunction with SNAP proteins (Mayer et al, 1996; Sollner et al, 1993; reviewed in Jahn and Scheller, 2006; Sudhof and Rothman, 2009).
R-HSA-6809015 (Reactome) NSF-dependent hydrolysis of ATP is required to disassociate the cis-SNARE complex, releasing the SNAREs for further rounds of membrane fusion (Mayer et al, 1996; Muller et al, 1999; Muller et al, 2002; Otto et al, 1997; Whiteheart et al, 2004; Yu et al, 1999; Zhao et al, 2012; Shah et al, 2015; reviewed in Sudhof and Rothman, 2009).
RAB1:GDPArrowR-HSA-6809010 (Reactome)
RAB1:GTP:GBF1:USO1:ARF:GDPArrowR-HSA-6807866 (Reactome)
RAB1:GTP:GBF1:USO1:ARF:GDPR-HSA-6807868 (Reactome)
RAB1:GTP:GBF1:USO1:ARF:GDPmim-catalysisR-HSA-6807868 (Reactome)
RAB1:GTP:GBF1:USO1:ARF:GTP:coatomer:ARFGAP1,2,3:PalmC-YKT6:p24 dimers:cargo:spectrin:ankyrinArrowR-HSA-6807875 (Reactome)
RAB1:GTP:GBF1:USO1:ARF:GTP:coatomer:ARFGAP1,2,3:PalmC-YKT6:p24 dimers:cargo:spectrin:ankyrinR-HSA-6807877 (Reactome)
RAB1:GTP:GBF1:USO1:ARF:GTP:coatomer:ARFGAP1,2,3:PalmC-YKT6:p24 dimers:cargo:spectrin:ankyrinmim-catalysisR-HSA-6807877 (Reactome)
RAB1:GTP:GBF1:USO1:ARF:GTP:coatomerArrowR-HSA-6807872 (Reactome)
RAB1:GTP:GBF1:USO1:ARF:GTP:coatomerR-HSA-6807875 (Reactome)
RAB1:GTP:GBF1:USO1:ARF:GTPArrowR-HSA-6807868 (Reactome)
RAB1:GTP:GBF1:USO1:ARF:GTPR-HSA-6807872 (Reactome)
RAB1:GTP:GBF1:USO1ArrowR-HSA-6807864 (Reactome)
RAB1:GTP:GBF1:USO1R-HSA-6807866 (Reactome)
RAB1:GTP:USO1 coatomer:PalmC-YKT6:p24 dimers:cargo:anykrin:spectrin:dynein:dynactin:microtubulesArrowR-HSA-6809003 (Reactome)
RAB1:GTP:USO1 coatomer:PalmC-YKT6:p24 dimers:cargo:anykrin:spectrin:dynein:dynactin:microtubulesR-HSA-6809006 (Reactome)
RAB1:GTP:USO1:coatomer:PalmC-YKT6:p24 dimers:cargo:spectrin:anykrin:COG complex:GOLGA2:GORASP1:GOLGB1:TMEM115ArrowR-HSA-6809006 (Reactome)
RAB1:GTP:USO1:coatomer:PalmC-YKT6:p24 dimers:cargo:spectrin:anykrin:COG complex:GOLGA2:GORASP1:GOLGB1:TMEM115R-HSA-6809011 (Reactome)
RAB1:GTP:USO1:coatomer:PalmC-YKT6:p24 dimers:cargo:spectrin:anykrinArrowR-HSA-6807877 (Reactome)
RAB1:GTP:USO1:coatomer:PalmC-YKT6:p24 dimers:cargo:spectrin:anykrinR-HSA-6809003 (Reactome)
RAB1:GTP:USO1:coatomer:p24 dimers:cargo:spectrin:ankyrin:COG complex:GOLGA2:GORASP1:TMEM115:cis-SNARE complexArrowR-HSA-6809011 (Reactome)
RAB1:GTP:USO1:coatomer:p24 dimers:cargo:spectrin:ankyrin:COG complex:GOLGA2:GORASP1:TMEM115:cis-SNARE complexR-HSA-6809010 (Reactome)
RAB1:GTPR-HSA-6807864 (Reactome)
SNAPsR-HSA-6809014 (Reactome)
STX5ArrowR-HSA-6809015 (Reactome)
Spectrin tetramerArrowR-HSA-6809010 (Reactome)
Spectrin tetramerR-HSA-6807875 (Reactome)
TMEM115ArrowR-HSA-6809010 (Reactome)
TMEM115R-HSA-6809006 (Reactome)
USO1 homodimerArrowR-HSA-6809010 (Reactome)
USO1 homodimerR-HSA-6807864 (Reactome)
cis-Golgi cis SNARE bundleArrowR-HSA-6809010 (Reactome)
cis-Golgi cis SNARE bundleR-HSA-6809014 (Reactome)
cis-Golgi t-SNARESR-HSA-6809011 (Reactome)
cis-SNARE:3xSNAP:NSF hexamerArrowR-HSA-6809014 (Reactome)
cis-SNARE:3xSNAP:NSF hexamerR-HSA-6809015 (Reactome)
cis-SNARE:3xSNAP:NSF hexamermim-catalysisR-HSA-6809015 (Reactome)
coatomerArrowR-HSA-6809010 (Reactome)
coatomer