Selenoamino acid metabolism (Homo sapiens)

From WikiPathways

Revision as of 16:15, 31 October 2018 by ReactomeTeam (Talk | contribs)
Jump to: navigation, search
215, 331329, 3034166232232, 36, 372163, 1532, 36, 377, 811, 261, 1213221431383113343517, 204, 59, 18, 253, 2773815, 3310, 19, 24cytosolPXLP RPL10A RPL39 Sec-tRNA(Sec) Hist,NAM,GlyH2SeO4SEPSECStetramer:PXLPSec-tRNA(Sec)RPL28 GSSeHRPL7A TXNRD1 RPL19 RPL31 RPS27A(77-156) tRNA(Sec)RPS16 RPS4Y2 PAPSS2 RPS27 RPL39 RPL18 2OBUTARPL29 ATPRPS2 PXLP PAPSS1,2RPL36AL Ade-RibRPSA RPL10L RPL40 5S rRNA H2ORPS5 MARS RPS23 RPL19 RPL39L RPL19 CTH CTH tetramer:PXLPRPS7 RPL37A AdoHcyRPL37 RPS11 pyruvic acidRPS28 RPL40 RPS25 RPL37A RPL41 RPL27A RPL31 NADP+RPS15 RPL4 Sep-tRNA(Sec)FAU 80S:Met-tRNAi:mRNA:SECISBP2:SecTNXRD1:FAD dimertRNA(Met)heme RPL11 GSHRPLP0 RPL22L1 GDP NADP+RPL6 RPL34 GSSeSGRPL3L RPL35A GSHSEPSECS NADPHRPL10L RPS19 RARS AdoMetPiRPL7 5.8S rRNA RPS20 H+RPS4X K+ RPL37A RPS21 RPS14 RPL5 RPL40 H2ORPS15 RPS3 RPS9 FAD RPL8 RPL23 RPL28 ATPRPL13A RPS20 Me2SeSECISBP2 RPL14 RPS4Y1 RPL15 NH3Me3Se+acceptorRPL39L 5.8S rRNA RPL7A RPL13 NADP+H2ORPLP0 RPL39L SeO3(2-)RPS8 RPS3 RPS3A TXNRD1 RPS24 RPS27L MetTrans(1)PXLP-CBS SEPHS2H2OSARC RPS6 Mg2+ RPL24 5S rRNA RPL8 HNMT RPL18A SARS Sec-tRNA(Sec):EEFSEC:GTP18S rRNA RPL21 PXLP H2OSARS dimerRPL29 RPL4 PiRPS7 MeHist,N1MNA,MeGlyRPL13 DARS AIMP2 PAPSeATPRPL36 GSHRPL26L1 RPL23A RPL26 GNMT PSTK:Mg2+RPS11 TNXRD1:FAD dimerRPL35 RPL10A CTH tetramer:PXLPIARS RPS4Y1 PSTK MeSeHRPL37 Gly RPL27A RPS10 RPS24 RPL3L RPS4Y2 NADPH2OBUTARPS2 RPS5 RPS23 NADP+RPLP1 RPL7 EEFSEC:GTP5.8S rRNA AMPSCLY NADPHRPLP2 EEF1E1 28S rRNA RPLP2 FAD AdoSeMetCBS tetramerRPL24 KARS Sec-tRNA(Sec) RPS18 RPL4 RPL5 EEFSEC RPL22 ADPRPL10A RPS27L RPLP2 RPL18 RPL26 RPL30 RPL18A RPLP0 RPLP1 RPS6 TXNRD1 AdoMetRPL35A RPL27 PAPRPL7 RPL22L1 RPL38 RPL18 RPS28 MeOHPAPSS1,2H+Sec RPL32 Mg2+ RPS27A(77-156) RPL34 AdeSeHCysRPL3 RPS13 RPS29 bGalNAc derivativeRPL36A RPS18 RPS14 RPSA RPL26L1 NADP+RPS27A(77-156) H2ONNMT RPL22 RPS12 NADPHRPS18 5S rRNA RPS4X RPL15 RPL17 28S rRNA L-SerRPS7 RPL9 RPS29 RPL22 AdoHcyRPS17 RPL27 RPL17 Hist RPL5 H2OAdoHcyRPS20 RPS15A RPL36A RPL15 RPL12 RPL26 RPL35 RPS27L RPLP1 AMPRPL7A GTP MeSecH2OPXLP ATPRPL3 RPL3L Ser-tRNA(Sec)EEFSEC RPS14 RPS19 MeSebGalNacMeSeO2HRPS27 RPL10 aminoacyl-tRNAsynthetasemultienzyme complexGSSGSeHCysRPL9 RPL35 RPL9 RPS3A RPS25 LARS RPL41 SecRPL21 L-AlaRPS21 RPL23 AdoHcyRPS4X EPRS RPS12 PAPSeRH2ORPL23A AMP80S:Met-tRNAi:mRNA:SECISBP2:Sec-tRNA(Sec):EEFSEC:GTPL-SerRPL38 RPS12 RPL12 MAT1A multimersH+SECISBP2 H2ORPS4Y1 RPS15A RPS28 H+2-acetamidoglucalRPL23 PiRPS13 MAT1A RPL28 MNA GSSebGalNacRPL36AL RPL27 RPS8 H+RPL22L1 RPL26L1 RPL34 AdoMetSeMet-tRNA(Met)RPS4Y2 PPiPPibGalNAcGSR-2 RPL6 RPS17 SECISBP2RPL17 FAD RPL36 Ceruloplasmin mRNA RPL14 SeCysta80S:Met-tRNAi:mRNAATPH2OATPTNXRD1:FAD dimerRPL30 RPL11 Ceruloplasmin mRNA RPL35A PAPSS1 AIMP1(1-312) RPL21 PPiRPS3 RPS9 RPS21 RPS19 28S rRNA NAM RPL10 RPS17 RPL39 RPL27A RPS15A H3PO4MeHist NADPHQARS NH3RPL31 CTH 18S rRNA RPS26 SELPPAPSS1 RPL36A GSHSeMetRPL14 RPL24 RPL29 RPS25 PAPSS2 RPL23A RPS3A GSSGRPL32 RPS9 H2ORPS5 RPL32 RPS13 RPL37 RPS2 RPL18A GTP H2ORPS11 RPS26 AHCYRPS16 RPL41 RPSA RPL36AL RPS8 Met-tRNAi RPS15 RPL30 GTP RPL3 H2SeRPL12 RPS26 FAD ADPMSDMEEFSEC:GDPFAU H2ORPS24 RPS23 RPL13A reduced acceptorH+EEFSEC RPS16 Met-tRNAi HSeMTRPL13 RPL10 Met-tRNAi RPL36 APSeRPS10 RPL6 Ceruloplasmin mRNA GSR-2:FAD dimerRPS10 INMTRPL10L PPiSCLY dimer:PXLPATPRPL38 RPS29 RPL13A RPS6 FAU 18S rRNA RPL8 H+MeSeOHEEFSEC MeSeHMTRPL11 RPS27 28


Description

Selenium (Se) is a trace element essential for the normal function of the body. Selenoamino acids are defined as those amino acids where selenium has been substituted for sulphur. Selenium and sulphur share many chemical properties and so the substitution of normal amino acids with selenoamino acids has little effect on protein structure and function. Both inorganic (selenite, SeO3(2-); and selenate, SeO4(2-)) and organic (selenocysteine, Sec; and selenomethionine, SeMet) forms of selenium can be introduced in the diet where they are transformed into the intermediate selenide (Se(2-)) and then utilized for the de novo synthesis of Sec through a phosphorylated intermediate in a tRNA-dependent fashion. The final step of Sec formation is catalyzed by O-phosphoseryl-tRNA:selenocysteinyl-tRNA synthase (SEPSECS) that converts phosphoseryl-tRNA(Sec) to selenocysteinyl-tRNA(Sec).

All nutritional selenium is metabolised into selenide directly or through methylselenol (MeSeH). Sec liberated from selenoproteins is transformed to Se(2-) by selenocysteine lyase (SCLY). SeMet liberated from general proteins and from free SeMet sources is transformed into Se(2-) either through MeSeH by cystathionine gamma-lyase (CTH) followed by demethylation (SeMet to CH3SeH to H2Se), or through Sec by SCLY after the trans-selenation pathway (SeMet to Sec to H2Se). MeSec is hydrolysed into MeSeH by CTH. Methylseleninic acid (MeSeO2H) is reduced to methylselenol. MeSeH is demethylated to Se(2-) for further utilization for selenoprotein synthesis or oxidised to selenite (SeO3(2-)) for excretion in the form of selenosugar. Additionally, MeSeH is further methylated to dimethylselenide (Me2Se) and trimethylselenonium (Me3Se+) for excretion. View original pathway at:Reactome.

Comments

Reactome-Converter 
Pathway is converted from Reactome ID: 2408522
Reactome-version 
Reactome version: 63
Reactome Author 
Reactome Author: Williams, MG

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Okuno T, Kubota T, Kuroda T, Ueno H, Nakamuro K.; ''Contribution of enzymic alpha, gamma-elimination reaction in detoxification pathway of selenomethionine in mouse liver.''; PubMed Europe PMC
  2. Bánszky L, Simonics T, Maráz A.; ''Sulphate metabolism of selenate-resistant Schizosaccharomyces pombe mutants.''; PubMed Europe PMC
  3. Kajander EO, Harvima RJ, Eloranta TO, Martikainen H, Kantola M, Kärenlampi SO, Akerman K.; ''Metabolism, cellular actions, and cytotoxicity of selenomethionine in cultured cells.''; PubMed Europe PMC
  4. Eustice DC, Kull FJ, Shrift A.; ''Selenium toxicity: aminoacylation and Peptide bond formation with selenomethionine.''; PubMed Europe PMC
  5. Chavatte L, Brown BA, Driscoll DM.; ''Ribosomal protein L30 is a component of the UGA-selenocysteine recoding machinery in eukaryotes.''; PubMed Europe PMC
  6. Fagegaltier D, Hubert N, Yamada K, Mizutani T, Carbon P, Krol A.; ''Characterization of mSelB, a novel mammalian elongation factor for selenoprotein translation.''; PubMed Europe PMC
  7. Daher R, Van Lente F.; ''Characterization of selenocysteine lyase in human tissues and its relationship to tissue selenium concentrations.''; PubMed Europe PMC
  8. Kobayashi Y, Ogra Y, Ishiwata K, Takayama H, Aimi N, Suzuki KT.; ''Selenosugars are key and urinary metabolites for selenium excretion within the required to low-toxic range.''; PubMed Europe PMC
  9. Venkatachalam KV, Akita H, Strott CA.; ''Molecular cloning, expression, and characterization of human bifunctional 3'-phosphoadenosine 5'-phosphosulfate synthase and its functional domains.''; PubMed Europe PMC
  10. Heckl M, Busch K, Gross HJ.; ''Minimal tRNA(Ser) and tRNA(Sec) substrates for human seryl-tRNA synthetase: contribution of tRNA domains to serylation and tertiary structure.''; PubMed Europe PMC
  11. Xu ZH, Otterness DM, Freimuth RR, Carlini EJ, Wood TC, Mitchell S, Moon E, Kim UJ, Xu JP, Siciliano MJ, Weinshilboum RM.; ''Human 3'-phosphoadenosine 5'-phosphosulfate synthetase 1 (PAPSS1) and PAPSS2: gene cloning, characterization and chromosomal localization.''; PubMed Europe PMC
  12. Amberg R, Mizutani T, Wu XQ, Gross HJ.; ''Selenocysteine synthesis in mammalia: an identity switch from tRNA(Ser) to tRNA(Sec).''; PubMed Europe PMC
  13. Björnstedt M, Kumar S, Holmgren A.; ''Selenodiglutathione is a highly efficient oxidant of reduced thioredoxin and a substrate for mammalian thioredoxin reductase.''; PubMed Europe PMC
  14. Wolfe CL, Warrington JA, Davis S, Green S, Norcum MT.; ''Isolation and characterization of human nuclear and cytosolic multisynthetase complexes and the intracellular distribution of p43/EMAPII.''; PubMed Europe PMC
  15. Carlson BA, Xu XM, Kryukov GV, Rao M, Berry MJ, Gladyshev VN, Hatfield DL.; ''Identification and characterization of phosphoseryl-tRNA[Ser]Sec kinase.''; PubMed Europe PMC
  16. Okuno T, Motobayashi S, Ueno H, Nakamuro K.; ''Purification and characterization of mouse hepatic enzyme that converts selenomethionine to methylselenol by its alpha,gamma-elimination.''; PubMed Europe PMC
  17. Gromer S, Gross JH.; ''Methylseleninate is a substrate rather than an inhibitor of mammalian thioredoxin reductase. Implications for the antitumor effects of selenium.''; PubMed Europe PMC
  18. Yu M, Martin RL, Jain S, Chen LJ, Segel IH.; ''Rat liver ATP-sulfurylase: purification, kinetic characterization, and interaction with arsenate, selenate, phosphate, and other inorganic oxyanions.''; PubMed Europe PMC
  19. Yuan J, Palioura S, Salazar JC, Su D, O'Donoghue P, Hohn MJ, Cardoso AM, Whitman WB, Söll D.; ''RNA-dependent conversion of phosphoserine forms selenocysteine in eukaryotes and archaea.''; PubMed Europe PMC
  20. Suzuki KT, Somekawa L, Suzuki N.; ''Distribution and reuse of 76Se-selenosugar in selenium-deficient rats.''; PubMed Europe PMC
  21. Suzuki KT, Kurasaki K, Suzuki N.; ''Selenocysteine beta-lyase and methylselenol demethylase in the metabolism of Se-methylated selenocompounds into selenide.''; PubMed Europe PMC
  22. Vincent C, Tarbouriech N, Härtlein M.; ''Genomic organization, cDNA sequence, bacterial expression, and purification of human seryl-tRNA synthase.''; PubMed Europe PMC
  23. Hsieh HS, Ganther HE.; ''Biosynthesis of dimethyl selenide from sodium selenite in rat liver and kidney cell-free systems.''; PubMed Europe PMC
  24. Palioura S, Sherrer RL, Steitz TA, Söll D, Simonovic M.; ''The human SepSecS-tRNASec complex reveals the mechanism of selenocysteine formation.''; PubMed Europe PMC
  25. Kajander EO, Harvima RJ, Kauppinen L, Akerman KK, Martikainen H, Pajula RL, Kärenlampi SO.; ''Effects of selenomethionine on cell growth and on S-adenosylmethionine metabolism in cultured malignant cells.''; PubMed Europe PMC
  26. Tamura T, Yamamoto S, Takahata M, Sakaguchi H, Tanaka H, Stadtman TC, Inagaki K.; ''Selenophosphate synthetase genes from lung adenocarcinoma cells: Sps1 for recycling L-selenocysteine and Sps2 for selenite assimilation.''; PubMed Europe PMC
  27. Sun QA, Wu Y, Zappacosta F, Jeang KT, Lee BJ, Hatfield DL, Gladyshev VN.; ''Redox regulation of cell signaling by selenocysteine in mammalian thioredoxin reductases.''; PubMed Europe PMC
  28. Kajander EO, Raina AM.; ''Affinity-chromatographic purification of S-adenosyl-L-homocysteine hydrolase. Some properties of the enzyme from rat liver.''; PubMed Europe PMC
  29. Esaki N, Nakamura T, Tanaka H, Suzuki T, Morino Y, Soda K.; ''Enzymatic synthesis of selenocysteine in rat liver.''; PubMed Europe PMC
  30. Pinto JT, Lee JI, Sinha R, MacEwan ME, Cooper AJ.; ''Chemopreventive mechanisms of α-keto acid metabolites of naturally occurring organoselenium compounds.''; PubMed Europe PMC
  31. Kumar S, Björnstedt M, Holmgren A.; ''Selenite is a substrate for calf thymus thioredoxin reductase and thioredoxin and elicits a large non-stoichiometric oxidation of NADPH in the presence of oxygen.''; PubMed Europe PMC
  32. Mozier NM, McConnell KP, Hoffman JL.; ''S-adenosyl-L-methionine:thioether S-methyltransferase, a new enzyme in sulfur and selenium metabolism.''; PubMed Europe PMC
  33. Burnell JN.; ''Methionyl-tRNA Synthetase from Phaseolus aureus: Purification and Properties.''; PubMed Europe PMC
  34. Omi R, Kurokawa S, Mihara H, Hayashi H, Goto M, Miyahara I, Kurihara T, Hirotsu K, Esaki N.; ''Reaction mechanism and molecular basis for selenium/sulfur discrimination of selenocysteine lyase.''; PubMed Europe PMC
  35. Tujebajeva RM, Copeland PR, Xu XM, Carlson BA, Harney JW, Driscoll DM, Hatfield DL, Berry MJ.; ''Decoding apparatus for eukaryotic selenocysteine insertion.''; PubMed Europe PMC
  36. Fairweather-Tait SJ, Bao Y, Broadley MR, Collings R, Ford D, Hesketh JE, Hurst R.; ''Selenium in human health and disease.''; PubMed Europe PMC
  37. Ohta Y, Suzuki KT.; ''Methylation and demethylation of intermediates selenide and methylselenol in the metabolism of selenium.''; PubMed Europe PMC
  38. Okuno T, Ueno H, Nakamuro K.; ''Cystathionine gamma-lyase contributes to selenomethionine detoxification and cytosolic glutathione peroxidase biosynthesis in mouse liver.''; PubMed Europe PMC

History

View all...
CompareRevisionActionTimeUserComment
101347view11:23, 1 November 2018ReactomeTeamreactome version 66
100885view20:57, 31 October 2018ReactomeTeamreactome version 65
100426view19:31, 31 October 2018ReactomeTeamreactome version 64
99976view16:15, 31 October 2018ReactomeTeamreactome version 63
99530view14:51, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
99168view12:42, 31 October 2018ReactomeTeamreactome version 62
93759view13:34, 16 August 2017ReactomeTeamreactome version 61
93281view11:19, 9 August 2017ReactomeTeamreactome version 61
87653view08:55, 25 July 2016LindarieswijkOntology Term : 'selenoamino acid metabolic pathway' added !
86360view09:16, 11 July 2016ReactomeTeamNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
18S rRNA ProteinX03205 (EMBL)
2-acetamidoglucalMetaboliteCHEBI:73979 (ChEBI)
28S rRNA ProteinM11167 (EMBL)
2OBUTAMetaboliteCHEBI:30831 (ChEBI)
5.8S rRNA ProteinJ01866 (EMBL)
5S rRNA ProteinV00589 (EMBL)
80S:Met-tRNAi:mRNA:SECISBP2:Sec-tRNA(Sec):EEFSEC:GTPComplexR-HSA-5359044 (Reactome)
80S:Met-tRNAi:mRNA:SECISBP2:SecComplexR-HSA-5359053 (Reactome)
80S:Met-tRNAi:mRNAComplexR-HSA-72505 (Reactome)
ADPMetaboliteCHEBI:16761 (ChEBI)
AHCYProtein