Selenoamino acid metabolism (Homo sapiens)

From WikiPathways

Revision as of 14:51, 31 October 2018 by ReactomeTeam (Talk | contribs)
Jump to: navigation, search
1220, 3219112, 9193516, 36, 381726197, 2214, 24111535178, 33, 3734, 227, 18133127, 30, 341, 317, 18516, 36, 382325, 28513610, 21cytosolRPS6 RPL41 Hist NADPHMeSeHMTRPS19 PPiRPL26L1 RPS15A PPiRPL19 RPL24 H2ORPS11 AdoHcySELPRPL4 RPS11 RPL3 5S rRNA RPL9 RPS23 RPS11 H2ORPS7 RPS29 5.8S rRNA RPL36 RPL26 RPL37 RPS15 RPL18 MAT1A multimersRPL15 Sec IARS RPL8 RPS15A AdoMetRPS5 RPL10L RPL7A acceptorH2ORPS26 RPS27 RPL18A L-SerRPL35 RPS23 18S rRNA RPS4Y1 RPL35A EEFSEC:GTPH2OK+ RPS17 AHCYEEFSEC RPS18 SeMetPXLP RPL26 H2SeO4RPS9 80S:Met-tRNAi:mRNA:SECISBP2:SecNNMT pyruvic acidEEF1E1 RPL14 RARS RPS24 CTH tetramer:PXLPGSHSECISBP2 RPL27A RPS20 AdoHcyATP28S rRNA RPS13 RPL7A 18S rRNA RPL15 RPL18 RPL38 RPL3L RPL5 RPS2 RPL6 RPL13A PAPSS1 EEFSEC TXNRD1 RPL34 RPLP2 RPL21 RPL40 RPS12 RPL22 GSHRPL22 RPS10 AIMP2 H+RPL12 GNMT RPL27 RPS9 RPSA RPL39L RPS13 MeSeO2HRPS3A RPL30 SEPHS2RPS18 RPL39L RPS3A TXNRD1 AMPRPS12 RPSA RPL31 APSe2OBUTARPS2 RPL31 28S rRNA RPS27 RPS27A(77-156) RPL22 EPRS TNXRD1:FAD dimer18S rRNA AdeSeHCysRPS12 28S rRNA PiMet-tRNAi GTP RPL6 SCLY PiRPL22L1 H+MeSeHRPL21 H2OMeSeOHSec-tRNA(Sec):EEFSEC:GTPSecADPRPL17 RPL39 RPL13 PXLP H2OPPiRPLP2 RPL19 RPS23 AIMP1(1-312) RPS21 H+CTH Mg2+ RPL29 NAM RPS9 RPL17 RPS28 RPL24 RPS15 RPL3L GTP SECISBP2MetTrans(1)PPiRPS20 RPL5 NADP+H+RPS27L RPL3 SECISBP2 RPS14 80S:Met-tRNAi:mRNAH+SEPSECS RPS7 RPL18A SEPSECStetramer:PXLPRPS21 RPS2 SeCystaPAPSS1 RPL13A RPS16 MARS SARC SeMet-tRNA(Met)ATPRPS6 RPL29 aminoacyl-tRNAsynthetasemultienzyme complexMeSecRPS6 RPL37A RPS14 GDP NADP+RPL4 LARS GSSebGalNacRPL31 RPL38 Met-tRNAi GSHRPS24 H2OSec-tRNA(Sec) TNXRD1:FAD dimerSeO3(2-)L-AlabGalNAc derivativeRPL36 Ser-tRNA(Sec)Mg2+ RPL37 RPL36AL GSSGRPL7 RPS29 H2ORPS25 RPS8 RPL21 RPL30 RPL11 RPL28 RPL39 RPS10 RPL13 RPL26L1 5S rRNA RPL23 RPL12 MeOHGTP RPL3 PiRPS19 MAT1A HNMT 2-acetamidoglucalDARS RPS27A(77-156) ATPATPGSR-2 5S rRNA Me2SeMSDMRPL23A PAPSS1,2RPS4X RPL27 CBS tetramerPXLP RPL10L H2ORPL4 bGalNAcFAD RPS26 RPL35A RPL28 RPS28 NADP+RPL27A HSeMTRPL35 NH3RPS27A(77-156) FAU Me3Se+RPS7 Hist,NAM,GlyTXNRD1 RPL11 RPLP2 5.8S rRNA Met-tRNAi RPLP0 Ade-RibNH3RPL30 RPL36AL RPL37A RPL36A ATPRPS4Y1 GSHSARS dimerAdoMetKARS RPS20 RPS27L RPL12 RPL13 Sep-tRNA(Sec)Ceruloplasmin mRNA H2ORPL40 RPL19 H2ORPLP1 RPL22L1 MeHist,N1MNA,MeGlyRPS13 PSTK RPL22L1 RPS15 H2OAdoHcyRPL40 RPL10 RPS4Y2 RPL23 ADPRPL35 QARS RPL10A FAD L-SerH3PO4RPL26 RPL11 PAPSS1,2RPS28 RPLP0 INMTRPL23A RPS3 RPL8 GSR-2:FAD dimerNADPHheme RPL3L AdoMetRPS8 RPS4Y2 RPS16 RPS3 PAPSS2 RPS4X RPL6 RPL23A RPS24 RPL27A Ceruloplasmin mRNA RPL35A RPS3A RPL34 AdoSeMetRPS16 RPS10 FAD RPS27 PXLP CTH RPS25 RPL10 Sec-tRNA(Sec)EEFSEC RPL37A RPS4Y2 ATPRPS8 SeHCysRPS17 RPS19 FAD RPL18 tRNA(Met)EEFSEC:GDPRPS18 RPL13A Ceruloplasmin mRNA RPS4X MeSebGalNacPAPRPL17 Sec-tRNA(Sec) PAPSS2 RPL32 NADPHRPL10A CTH tetramer:PXLPRPL8 RPS17 PAPSeRPL34 H2OGly RPL41 RPL7 PSTK:Mg2+H+H2SeGSSeSGreduced acceptortRNA(Sec)NADP+FAU SARS NADPHRPLP1 GSSGTNXRD1:FAD dimerRPL14 SCLY dimer:PXLPRPLP1 RPS3 RPL36AL AMPRPL18A PXLP-CBS AdoHcyH+RPL24 RPL9 RPS4Y1 RPL9 RPL7A RPL28 RPL14 RPLP0 RPL15 RPL5 5.8S rRNA GSSeHRPS14 RPS27L RPS25 RPS29 NADP+H2ORPL36A RPL38 RPL36 RPL29 ATPRPL32 RPSA RPL23 NADPHRPL37 80S:Met-tRNAi:mRNA:SECISBP2:Sec-tRNA(Sec):EEFSEC:GTPRPS26 RPL39 2OBUTARPS5 FAU RPL26L1 RPS5 RPL36A RPL10 RPL27 RPL10A RPL39L MeHist RPL32 RPL7 EEFSEC AMPRPL10L PAPSeRRPS21 MNA RPS15A RPL41 29


Description

Selenium (Se) is a trace element essential for the normal function of the body. Selenoamino acids are defined as those amino acids where selenium has been substituted for sulphur. Selenium and sulphur share many chemical properties and so the substitution of normal amino acids with selenoamino acids has little effect on protein structure and function. Both inorganic (selenite, SeO3(2-); and selenate, SeO4(2-)) and organic (selenocysteine, Sec; and selenomethionine, SeMet) forms of selenium can be introduced in the diet where they are transformed into the intermediate selenide (Se(2-)) and then utilized for the de novo synthesis of Sec through a phosphorylated intermediate in a tRNA-dependent fashion. The final step of Sec formation is catalyzed by O-phosphoseryl-tRNA:selenocysteinyl-tRNA synthase (SEPSECS) that converts phosphoseryl-tRNA(Sec) to selenocysteinyl-tRNA(Sec).

All nutritional selenium is metabolised into selenide directly or through methylselenol (MeSeH). Sec liberated from selenoproteins is transformed to Se(2-) by selenocysteine lyase (SCLY). SeMet liberated from general proteins and from free SeMet sources is transformed into Se(2-) either through MeSeH by cystathionine gamma-lyase (CTH) followed by demethylation (SeMet to CH3SeH to H2Se), or through Sec by SCLY after the trans-selenation pathway (SeMet to Sec to H2Se). MeSec is hydrolysed into MeSeH by CTH. Methylseleninic acid (MeSeO2H) is reduced to methylselenol. MeSeH is demethylated to Se(2-) for further utilization for selenoprotein synthesis or oxidised to selenite (SeO3(2-)) for excretion in the form of selenosugar. Additionally, MeSeH is further methylated to dimethylselenide (Me2Se) and trimethylselenonium (Me3Se+) for excretion. View original pathway at:Reactome.

Comments

Reactome-Converter 
Pathway is converted from Reactome ID: 2408522
Reactome-version 
Reactome version: 62
Reactome Author 
Reactome Author: Williams, MG

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Okuno T, Kubota T, Kuroda T, Ueno H, Nakamuro K.; ''Contribution of enzymic alpha, gamma-elimination reaction in detoxification pathway of selenomethionine in mouse liver.''; PubMed Europe PMC
  2. Bánszky L, Simonics T, Maráz A.; ''Sulphate metabolism of selenate-resistant Schizosaccharomyces pombe mutants.''; PubMed Europe PMC
  3. Kajander EO, Harvima RJ, Eloranta TO, Martikainen H, Kantola M, Kärenlampi SO, Akerman K.; ''Metabolism, cellular actions, and cytotoxicity of selenomethionine in cultured cells.''; PubMed Europe PMC
  4. Eustice DC, Kull FJ, Shrift A.; ''Selenium toxicity: aminoacylation and Peptide bond formation with selenomethionine.''; PubMed Europe PMC
  5. Chavatte L, Brown BA, Driscoll DM.; ''Ribosomal protein L30 is a component of the UGA-selenocysteine recoding machinery in eukaryotes.''; PubMed Europe PMC
  6. Fagegaltier D, Hubert N, Yamada K, Mizutani T, Carbon P, Krol A.; ''Characterization of mSelB, a novel mammalian elongation factor for selenoprotein translation.''; PubMed Europe PMC
  7. Daher R, Van Lente F.; ''Characterization of selenocysteine lyase in human tissues and its relationship to tissue selenium concentrations.''; PubMed Europe PMC
  8. Kobayashi Y, Ogra Y, Ishiwata K, Takayama H, Aimi N, Suzuki KT.; ''Selenosugars are key and urinary metabolites for selenium excretion within the required to low-toxic range.''; PubMed Europe PMC
  9. Venkatachalam KV, Akita H, Strott CA.; ''Molecular cloning, expression, and characterization of human bifunctional 3'-phosphoadenosine 5'-phosphosulfate synthase and its functional domains.''; PubMed Europe PMC
  10. Heckl M, Busch K, Gross HJ.; ''Minimal tRNA(Ser) and tRNA(Sec) substrates for human seryl-tRNA synthetase: contribution of tRNA domains to serylation and tertiary structure.''; PubMed Europe PMC
  11. Xu ZH, Otterness DM, Freimuth RR, Carlini EJ, Wood TC, Mitchell S, Moon E, Kim UJ, Xu JP, Siciliano MJ, Weinshilboum RM.; ''Human 3'-phosphoadenosine 5'-phosphosulfate synthetase 1 (PAPSS1) and PAPSS2: gene cloning, characterization and chromosomal localization.''; PubMed Europe PMC
  12. Amberg R, Mizutani T, Wu XQ, Gross HJ.; ''Selenocysteine synthesis in mammalia: an identity switch from tRNA(Ser) to tRNA(Sec).''; PubMed Europe PMC
  13. Björnstedt M, Kumar S, Holmgren A.; ''Selenodiglutathione is a highly efficient oxidant of reduced thioredoxin and a substrate for mammalian thioredoxin reductase.''; PubMed Europe PMC
  14. Wolfe CL, Warrington JA, Davis S, Green S, Norcum MT.; ''Isolation and characterization of human nuclear and cytosolic multisynthetase complexes and the intracellular distribution of p43/EMAPII.''; PubMed Europe PMC
  15. Carlson BA, Xu XM, Kryukov GV, Rao M, Berry MJ, Gladyshev VN, Hatfield DL.; ''Identification and characterization of phosphoseryl-tRNA[Ser]Sec kinase.''; PubMed Europe PMC
  16. Okuno T, Motobayashi S, Ueno H, Nakamuro K.; ''Purification and characterization of mouse hepatic enzyme that converts selenomethionine to methylselenol by its alpha,gamma-elimination.''; PubMed Europe PMC
  17. Gromer S, Gross JH.; ''Methylseleninate is a substrate rather than an inhibitor of mammalian thioredoxin reductase. Implications for the antitumor effects of selenium.''; PubMed Europe PMC
  18. Yu M, Martin RL, Jain S, Chen LJ, Segel IH.; ''Rat liver ATP-sulfurylase: purification, kinetic characterization, and interaction with arsenate, selenate, phosphate, and other inorganic oxyanions.''; PubMed Europe PMC
  19. Yuan J, Palioura S, Salazar JC, Su D, O'Donoghue P, Hohn MJ, Cardoso AM, Whitman WB, Söll D.; ''RNA-dependent conversion of phosphoserine forms selenocysteine in eukaryotes and archaea.''; PubMed Europe PMC
  20. Suzuki KT, Somekawa L, Suzuki N.; ''Distribution and reuse of 76Se-selenosugar in selenium-deficient rats.''; PubMed Europe PMC
  21. Suzuki KT, Kurasaki K, Suzuki N.; ''Selenocysteine beta-lyase and methylselenol demethylase in the metabolism of Se-methylated selenocompounds into selenide.''; PubMed Europe PMC
  22. Vincent C, Tarbouriech N, Härtlein M.; ''Genomic organization, cDNA sequence, bacterial expression, and purification of human seryl-tRNA synthase.''; PubMed Europe PMC
  23. Hsieh HS, Ganther HE.; ''Biosynthesis of dimethyl selenide from sodium selenite in rat liver and kidney cell-free systems.''; PubMed Europe PMC
  24. Palioura S, Sherrer RL, Steitz TA, Söll D, Simonovic M.; ''The human SepSecS-tRNASec complex reveals the mechanism of selenocysteine formation.''; PubMed Europe PMC
  25. Kajander EO, Harvima RJ, Kauppinen L, Akerman KK, Martikainen H, Pajula RL, Kärenlampi SO.; ''Effects of selenomethionine on cell growth and on S-adenosylmethionine metabolism in cultured malignant cells.''; PubMed Europe PMC
  26. Tamura T, Yamamoto S, Takahata M, Sakaguchi H, Tanaka H, Stadtman TC, Inagaki K.; ''Selenophosphate synthetase genes from lung adenocarcinoma cells: Sps1 for recycling L-selenocysteine and Sps2 for selenite assimilation.''; PubMed Europe PMC
  27. Sun QA, Wu Y, Zappacosta F, Jeang KT, Lee BJ, Hatfield DL, Gladyshev VN.; ''Redox regulation of cell signaling by selenocysteine in mammalian thioredoxin reductases.''; PubMed Europe PMC
  28. Kajander EO, Raina AM.; ''Affinity-chromatographic purification of S-adenosyl-L-homocysteine hydrolase. Some properties of the enzyme from rat liver.''; PubMed Europe PMC
  29. Esaki N, Nakamura T, Tanaka H, Suzuki T, Morino Y, Soda K.; ''Enzymatic synthesis of selenocysteine in rat liver.''; PubMed Europe PMC
  30. Pinto JT, Lee JI, Sinha R, MacEwan ME, Cooper AJ.; ''Chemopreventive mechanisms of α-keto acid metabolites of naturally occurring organoselenium compounds.''; PubMed Europe PMC
  31. Kumar S, Björnstedt M, Holmgren A.; ''Selenite is a substrate for calf thymus thioredoxin reductase and thioredoxin and elicits a large non-stoichiometric oxidation of NADPH in the presence of oxygen.''; PubMed Europe PMC
  32. Mozier NM, McConnell KP, Hoffman JL.; ''S-adenosyl-L-methionine:thioether S-methyltransferase, a new enzyme in sulfur and selenium metabolism.''; PubMed Europe PMC
  33. Burnell JN.; ''Methionyl-tRNA Synthetase from Phaseolus aureus: Purification and Properties.''; PubMed Europe PMC
  34. Omi R, Kurokawa S, Mihara H, Hayashi H, Goto M, Miyahara I, Kurihara T, Hirotsu K, Esaki N.; ''Reaction mechanism and molecular basis for selenium/sulfur discrimination of selenocysteine lyase.''; PubMed Europe PMC
  35. Tujebajeva RM, Copeland PR, Xu XM, Carlson BA, Harney JW, Driscoll DM, Hatfield DL, Berry MJ.; ''Decoding apparatus for eukaryotic selenocysteine insertion.''; PubMed Europe PMC
  36. Fairweather-Tait SJ, Bao Y, Broadley MR, Collings R, Ford D, Hesketh JE, Hurst R.; ''Selenium in human health and disease.''; PubMed Europe PMC
  37. Ohta Y, Suzuki KT.; ''Methylation and demethylation of intermediates selenide and methylselenol in the metabolism of selenium.''; PubMed Europe PMC
  38. Okuno T, Ueno H, Nakamuro K.; ''Cystathionine gamma-lyase contributes to selenomethionine detoxification and cytosolic glutathione peroxidase biosynthesis in mouse liver.''; PubMed Europe PMC

History

View all...
CompareRevisionActionTimeUserComment
101347view11:23, 1 November 2018ReactomeTeamreactome version 66
100885view20:57, 31 October 2018ReactomeTeamreactome version 65
100426view19:31, 31 October 2018ReactomeTeamreactome version 64
99976view16:15, 31 October 2018ReactomeTeamreactome version 63
99530view14:51, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
99168view12:42, 31 October 2018ReactomeTeamreactome version 62
93759view13:34, 16 August 2017ReactomeTeamreactome version 61
93281view11:19, 9 August 2017ReactomeTeamreactome version 61
87653view08:55, 25 July 2016LindarieswijkOntology Term : 'selenoamino acid metabolic pathway' added !
86360view09:16, 11 July 2016ReactomeTeamNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
18S rRNA ProteinX03205 (EMBL)
2-acetamidoglucalMetaboliteCHEBI:73979 (ChEBI)
28S rRNA ProteinM11167 (EMBL)
2OBUTAMetaboliteCHEBI:30831 (ChEBI)
5.8S rRNA ProteinJ01866 (EMBL)
5S rRNA ProteinV00589 (EMBL)
80S:Met-tRNAi:mRNA:SECISBP2:Sec-tRNA(Sec):EEFSEC:GTPComplexR-HSA-5359044 (Reactome)
80S:Met-tRNAi:mRNA:SECISBP2:SecComplexR-HSA-5359053 (Reactome)
80S:Met-tRNAi:mRNAComplexR-HSA-72505 (Reactome)
ADPMetaboliteCHEBI:16761 (ChEBI)
AHCYProtein