Selenoamino acid metabolism (Homo sapiens)

From WikiPathways

Revision as of 12:42, 31 October 2018 by ReactomeTeam (Talk | contribs)
Jump to: navigation, search
1726, 302, 54, 186, 10, 142427, 35, 3721, 261636331, 3, 811, 232521, 2615, 2032287, 133819, 30316, 10, 14382924229, 34283332331634cytosolEEFSEC RPS6 ATPRPS2 RPL27 MeSeHMTRPL9 MeHist MeSecRPSA RPS4Y1 RPS3A SeHCysTNXRD1:FAD dimerRPS2 RPL31 RPL26L1 RPL11 AdoMetSec-tRNA(Sec) RPS6 SeO3(2-)RPL41 NH3PAPSS1 H+RPS12 RPL37A RPS15 RPS4Y1 RPS4Y2 HNMT RPL10L RPL4 RPL8 RPL41 Me3Se+MetTrans(1)GSHRPS17 RPL32 ADPMeSebGalNacRPS3A CTH RPS15 SCLY dimer:PXLPRPL18A MeSeO2HNADP+RPS27L ADPRPS24 RPL10A RPS20 RPS16 RPL35 SEPHS2RPL11 RPL29 RPL22L1 RPLP1 RPL14 PXLP Sec-tRNA(Sec):EEFSEC:GTPRPS24 NADP+EEFSEC L-SerRPL35A FAD LARS RPL22L1 PXLP RPL23A RPS16 SARS Ser-tRNA(Sec)AdoMetRPL26 reduced acceptorAdoHcyRPL14 RPL27A RPL37 bGalNAc derivativeRPL3 RPS23 RPS29 RPS9 RPS8 RPL26 RPS8 RPL23 5.8S rRNA RPS21 5S rRNA RPL37A CTH ATPAde-RibSECISBP2 RPS4X RPL23 RPL30 RPS6 acceptorRPL10 RPL27A RPL13A RPL18 5S rRNA H2ORPL18A AdoHcyDARS RPS23 RPS13 K+ H2ORPS27 H2ORPS28 PAPSS1,2H2ORPS14 AdoHcyRPL38 RPL19 RPL8 Mg2+ RPL30 PSTK RPL12 RPSA RPL21 Met-tRNAi RPS27L RPL22 tRNA(Met)GSHSARC RPL38 RPL10A RPL36 H2OH+80S:Met-tRNAi:mRNARPS17 RPL35 RPLP1 PPiPAPSS1 pyruvic acidMeSeHRPS4Y2 MNA IARS RPS4X RPS5 AdoHcyRPS3A EPRS SEPSECS RPS4X RPS18 RPL27A RPS19 RPL27 GTP Mg2+ RPL6 RPL22 RPS7 H2OPAPMe2SeRPL12 RPL41 NADPHAdeSeHCysRPS11 RPL37 CBS tetramerRPS9 2-acetamidoglucalATPRPL27 Met-tRNAi SELPRPL15 RPL28 RPL36AL RPL7 80S:Met-tRNAi:mRNA:SECISBP2:Sec-tRNA(Sec):EEFSEC:GTPRPL7 RPS4Y1 H2OMAT1A RPS20 RPS5 RPS21 RPS25 ATPTNXRD1:FAD dimerRPS3 FAD EEFSEC RPL28 NADP+RPL6 AIMP1(1-312) RPS18 AMPHSeMTRPL32 RPLP2 PiRPLP2 ATPPXLP-CBS RPL18 RPL39 Sec-tRNA(Sec) AIMP2 PiINMTPAPSS1,2RPS25 RPL32 FAU RPL36 GSHRPLP2 H2OPAPSeRRPS15A NADP+TXNRD1 PAPSeRPS20 AdoSeMetRPS10 RPS2 PAPSS2 RPS14 RPL36AL NADP+RPS26 GSSeHSec-tRNA(Sec)NNMT H+RPL24 RPL26L1 RPS10 MeOHRPLP0 MeHist,N1MNA,MeGlyRPL36A AdoMetRPS5 RPS27A(77-156) RPS14 RPL7A RPL36AL MeSeOHSec SARS dimerNAM AMPRPL26 2OBUTARPS4Y2 RPL39L RPL23A RPL39 GSSeSGKARS GSSGRPLP0 RPL24 SCLY RPL14 RPL23 GTP RPL39L RPL6 RPS26 Ceruloplasmin mRNA EEF1E1 RPL5 PXLP RPS3 RPL36A RPL15 RPL22L1 RPS11 H2ORPL5 RPLP0 RPL5 EEFSEC:GDPRPS28 aminoacyl-tRNAsynthetasemultienzyme complexFAU RPS12 RPL13A RPL13A GSHRPL40 RPL10A RPL13 H2O2OBUTASeMet-tRNA(Met)H+SecPSTK:Mg2+SECISBP2 RPS15A RPL3L RPL35 SeCystaRPS27 RPL13 RPS18 EEFSEC:GTPtRNA(Sec)RARS AHCYRPL7A RPL4 RPL28 RPS7 RPL26L1 RPS24 RPL40 5.8S rRNA RPS27L RPL39L NADPHRPSA RPS21 PPiRPL3L RPS28 NADPHRPL22 RPS10 PPiRPL3 Sep-tRNA(Sec)RPL13 28S rRNA TXNRD1 GSR-2 PXLP ATPRPS27A(77-156) MSDMRPL21 RPL3L RPL21 18S rRNA RPS13 TXNRD1 RPL10 GNMT RPL40 RPL30 AMPAPSeRPS7 RPL38 FAD Hist,NAM,GlyHist GSR-2:FAD dimerGTP H2OGly RPL7A RPS11 H+PPiTNXRD1:FAD dimerRPL15 SECISBP280S:Met-tRNAi:mRNA:SECISBP2:SecRPS23 Ceruloplasmin mRNA H2ORPS12 RPS15A RPL37A RPL31 RPL8 28S rRNA RPL17 RPL18 bGalNAcRPL19 RPL39 RPS25 5S rRNA RPL17 RPS17 Met-tRNAi RPLP1 EEFSEC RPL34 RPL35A RPS29 H+L-AlaPiRPL24 RPL18A RPS9 RPS3 RPL31 RPS16 FAU GSSebGalNacheme 5.8S rRNA L-SerSeMetRPS8 NADPHH2OATPRPS15 H2SeO4RPL4 CTH tetramer:PXLPGDP RPL37 RPS26 H2SeCeruloplasmin mRNA RPS27A(77-156) RPS29 RPS13 RPL9 MAT1A multimersRPL29 RPL10 RPS27 RPL10L 18S rRNA CTH tetramer:PXLPRPL7 RPS19 18S rRNA NADPHRPL35A RPL36A RPL17 RPL34 QARS RPL10L H3PO4H2ORPL36 GSSGRPS19 28S rRNA RPL12 PAPSS2 NH3FAD SEPSECStetramer:PXLPRPL11 RPL3 H+RPL34 MARS RPL23A RPL19 RPL29 RPL9 12


Description

Selenium (Se) is a trace element essential for the normal function of the body. Selenoamino acids are defined as those amino acids where selenium has been substituted for sulphur. Selenium and sulphur share many chemical properties and so the substitution of normal amino acids with selenoamino acids has little effect on protein structure and function. Both inorganic (selenite, SeO3(2-); and selenate, SeO4(2-)) and organic (selenocysteine, Sec; and selenomethionine, SeMet) forms of selenium can be introduced in the diet where they are transformed into the intermediate selenide (Se(2-)) and then utilized for the de novo synthesis of Sec through a phosphorylated intermediate in a tRNA-dependent fashion. The final step of Sec formation is catalyzed by O-phosphoseryl-tRNA:selenocysteinyl-tRNA synthase (SEPSECS) that converts phosphoseryl-tRNA(Sec) to selenocysteinyl-tRNA(Sec).

All nutritional selenium is metabolised into selenide directly or through methylselenol (MeSeH). Sec liberated from selenoproteins is transformed to Se(2-) by selenocysteine lyase (SCLY). SeMet liberated from general proteins and from free SeMet sources is transformed into Se(2-) either through MeSeH by cystathionine gamma-lyase (CTH) followed by demethylation (SeMet to CH3SeH to H2Se), or through Sec by SCLY after the trans-selenation pathway (SeMet to Sec to H2Se). MeSec is hydrolysed into MeSeH by CTH. Methylseleninic acid (MeSeO2H) is reduced to methylselenol. MeSeH is demethylated to Se(2-) for further utilization for selenoprotein synthesis or oxidised to selenite (SeO3(2-)) for excretion in the form of selenosugar. Additionally, MeSeH is further methylated to dimethylselenide (Me2Se) and trimethylselenonium (Me3Se+) for excretion. View original pathway at:Reactome.

Comments

Reactome-Converter 
Pathway is converted from Reactome ID: 2408522
Reactome-version 
Reactome version: 62
Reactome Author 
Reactome Author: Williams, MG

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Okuno T, Kubota T, Kuroda T, Ueno H, Nakamuro K.; ''Contribution of enzymic alpha, gamma-elimination reaction in detoxification pathway of selenomethionine in mouse liver.''; PubMed Europe PMC
  2. Bánszky L, Simonics T, Maráz A.; ''Sulphate metabolism of selenate-resistant Schizosaccharomyces pombe mutants.''; PubMed Europe PMC
  3. Kajander EO, Harvima RJ, Eloranta TO, Martikainen H, Kantola M, Kärenlampi SO, Akerman K.; ''Metabolism, cellular actions, and cytotoxicity of selenomethionine in cultured cells.''; PubMed Europe PMC
  4. Eustice DC, Kull FJ, Shrift A.; ''Selenium toxicity: aminoacylation and Peptide bond formation with selenomethionine.''; PubMed Europe PMC
  5. Chavatte L, Brown BA, Driscoll DM.; ''Ribosomal protein L30 is a component of the UGA-selenocysteine recoding machinery in eukaryotes.''; PubMed Europe PMC
  6. Fagegaltier D, Hubert N, Yamada K, Mizutani T, Carbon P, Krol A.; ''Characterization of mSelB, a novel mammalian elongation factor for selenoprotein translation.''; PubMed Europe PMC
  7. Daher R, Van Lente F.; ''Characterization of selenocysteine lyase in human tissues and its relationship to tissue selenium concentrations.''; PubMed Europe PMC
  8. Kobayashi Y, Ogra Y, Ishiwata K, Takayama H, Aimi N, Suzuki KT.; ''Selenosugars are key and urinary metabolites for selenium excretion within the required to low-toxic range.''; PubMed Europe PMC
  9. Venkatachalam KV, Akita H, Strott CA.; ''Molecular cloning, expression, and characterization of human bifunctional 3'-phosphoadenosine 5'-phosphosulfate synthase and its functional domains.''; PubMed Europe PMC
  10. Heckl M, Busch K, Gross HJ.; ''Minimal tRNA(Ser) and tRNA(Sec) substrates for human seryl-tRNA synthetase: contribution of tRNA domains to serylation and tertiary structure.''; PubMed Europe PMC
  11. Xu ZH, Otterness DM, Freimuth RR, Carlini EJ, Wood TC, Mitchell S, Moon E, Kim UJ, Xu JP, Siciliano MJ, Weinshilboum RM.; ''Human 3'-phosphoadenosine 5'-phosphosulfate synthetase 1 (PAPSS1) and PAPSS2: gene cloning, characterization and chromosomal localization.''; PubMed Europe PMC
  12. Amberg R, Mizutani T, Wu XQ, Gross HJ.; ''Selenocysteine synthesis in mammalia: an identity switch from tRNA(Ser) to tRNA(Sec).''; PubMed Europe PMC
  13. Björnstedt M, Kumar S, Holmgren A.; ''Selenodiglutathione is a highly efficient oxidant of reduced thioredoxin and a substrate for mammalian thioredoxin reductase.''; PubMed Europe PMC
  14. Wolfe CL, Warrington JA, Davis S, Green S, Norcum MT.; ''Isolation and characterization of human nuclear and cytosolic multisynthetase complexes and the intracellular distribution of p43/EMAPII.''; PubMed Europe PMC
  15. Carlson BA, Xu XM, Kryukov GV, Rao M, Berry MJ, Gladyshev VN, Hatfield DL.; ''Identification and characterization of phosphoseryl-tRNA[Ser]Sec kinase.''; PubMed Europe PMC
  16. Okuno T, Motobayashi S, Ueno H, Nakamuro K.; ''Purification and characterization of mouse hepatic enzyme that converts selenomethionine to methylselenol by its alpha,gamma-elimination.''; PubMed Europe PMC
  17. Gromer S, Gross JH.; ''Methylseleninate is a substrate rather than an inhibitor of mammalian thioredoxin reductase. Implications for the antitumor effects of selenium.''; PubMed Europe PMC
  18. Yu M, Martin RL, Jain S, Chen LJ, Segel IH.; ''Rat liver ATP-sulfurylase: purification, kinetic characterization, and interaction with arsenate, selenate, phosphate, and other inorganic oxyanions.''; PubMed Europe PMC
  19. Yuan J, Palioura S, Salazar JC, Su D, O'Donoghue P, Hohn MJ, Cardoso AM, Whitman WB, Söll D.; ''RNA-dependent conversion of phosphoserine forms selenocysteine in eukaryotes and archaea.''; PubMed Europe PMC
  20. Suzuki KT, Somekawa L, Suzuki N.; ''Distribution and reuse of 76Se-selenosugar in selenium-deficient rats.''; PubMed Europe PMC
  21. Suzuki KT, Kurasaki K, Suzuki N.; ''Selenocysteine beta-lyase and methylselenol demethylase in the metabolism of Se-methylated selenocompounds into selenide.''; PubMed Europe PMC
  22. Vincent C, Tarbouriech N, Härtlein M.; ''Genomic organization, cDNA sequence, bacterial expression, and purification of human seryl-tRNA synthase.''; PubMed Europe PMC
  23. Hsieh HS, Ganther HE.; ''Biosynthesis of dimethyl selenide from sodium selenite in rat liver and kidney cell-free systems.''; PubMed Europe PMC
  24. Palioura S, Sherrer RL, Steitz TA, Söll D, Simonovic M.; ''The human SepSecS-tRNASec complex reveals the mechanism of selenocysteine formation.''; PubMed Europe PMC
  25. Kajander EO, Harvima RJ, Kauppinen L, Akerman KK, Martikainen H, Pajula RL, Kärenlampi SO.; ''Effects of selenomethionine on cell growth and on S-adenosylmethionine metabolism in cultured malignant cells.''; PubMed Europe PMC
  26. Tamura T, Yamamoto S, Takahata M, Sakaguchi H, Tanaka H, Stadtman TC, Inagaki K.; ''Selenophosphate synthetase genes from lung adenocarcinoma cells: Sps1 for recycling L-selenocysteine and Sps2 for selenite assimilation.''; PubMed Europe PMC
  27. Sun QA, Wu Y, Zappacosta F, Jeang KT, Lee BJ, Hatfield DL, Gladyshev VN.; ''Redox regulation of cell signaling by selenocysteine in mammalian thioredoxin reductases.''; PubMed Europe PMC
  28. Kajander EO, Raina AM.; ''Affinity-chromatographic purification of S-adenosyl-L-homocysteine hydrolase. Some properties of the enzyme from rat liver.''; PubMed Europe PMC
  29. Esaki N, Nakamura T, Tanaka H, Suzuki T, Morino Y, Soda K.; ''Enzymatic synthesis of selenocysteine in rat liver.''; PubMed Europe PMC
  30. Pinto JT, Lee JI, Sinha R, MacEwan ME, Cooper AJ.; ''Chemopreventive mechanisms of α-keto acid metabolites of naturally occurring organoselenium compounds.''; PubMed Europe PMC
  31. Kumar S, Björnstedt M, Holmgren A.; ''Selenite is a substrate for calf thymus thioredoxin reductase and thioredoxin and elicits a large non-stoichiometric oxidation of NADPH in the presence of oxygen.''; PubMed Europe PMC
  32. Mozier NM, McConnell KP, Hoffman JL.; ''S-adenosyl-L-methionine:thioether S-methyltransferase, a new enzyme in sulfur and selenium metabolism.''; PubMed Europe PMC
  33. Burnell JN.; ''Methionyl-tRNA Synthetase from Phaseolus aureus: Purification and Properties.''; PubMed Europe PMC
  34. Omi R, Kurokawa S, Mihara H, Hayashi H, Goto M, Miyahara I, Kurihara T, Hirotsu K, Esaki N.; ''Reaction mechanism and molecular basis for selenium/sulfur discrimination of selenocysteine lyase.''; PubMed Europe PMC
  35. Tujebajeva RM, Copeland PR, Xu XM, Carlson BA, Harney JW, Driscoll DM, Hatfield DL, Berry MJ.; ''Decoding apparatus for eukaryotic selenocysteine insertion.''; PubMed Europe PMC
  36. Fairweather-Tait SJ, Bao Y, Broadley MR, Collings R, Ford D, Hesketh JE, Hurst R.; ''Selenium in human health and disease.''; PubMed Europe PMC
  37. Ohta Y, Suzuki KT.; ''Methylation and demethylation of intermediates selenide and methylselenol in the metabolism of selenium.''; PubMed Europe PMC
  38. Okuno T, Ueno H, Nakamuro K.; ''Cystathionine gamma-lyase contributes to selenomethionine detoxification and cytosolic glutathione peroxidase biosynthesis in mouse liver.''; PubMed Europe PMC

History

View all...
CompareRevisionActionTimeUserComment
101347view11:23, 1 November 2018ReactomeTeamreactome version 66
100885view20:57, 31 October 2018ReactomeTeamreactome version 65
100426view19:31, 31 October 2018ReactomeTeamreactome version 64
99976view16:15, 31 October 2018ReactomeTeamreactome version 63
99530view14:51, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
99168view12:42, 31 October 2018ReactomeTeamreactome version 62
93759view13:34, 16 August 2017ReactomeTeamreactome version 61
93281view11:19, 9 August 2017ReactomeTeamreactome version 61
87653view08:55, 25 July 2016LindarieswijkOntology Term : 'selenoamino acid metabolic pathway' added !
86360view09:16, 11 July 2016ReactomeTeamNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
18S rRNA ProteinX03205 (EMBL)
2-acetamidoglucalMetaboliteCHEBI:73979 (ChEBI)
28S rRNA ProteinM11167 (EMBL)
2OBUTAMetaboliteCHEBI:30831 (ChEBI)
5.8S rRNA ProteinJ01866 (EMBL)
5S rRNA ProteinV00589 (EMBL)
80S:Met-tRNAi:mRNA:SECISBP2:Sec-tRNA(Sec):EEFSEC:GTPComplexR-HSA-5359044 (Reactome)
80S:Met-tRNAi:mRNA:SECISBP2:SecComplexR-HSA-5359053 (Reactome)
80S:Met-tRNAi:mRNAComplexR-HSA-72505 (Reactome)
ADPMetaboliteCHEBI:16761 (ChEBI)
AHCYProteinP23526 (Uniprot-TrEMBL) <