Selenoamino acid metabolism (Homo sapiens)

From WikiPathways

Revision as of 11:19, 9 August 2017 by ReactomeTeam (Talk | contribs)
Jump to: navigation, search
310, 363525, 2735182345, 21, 347, 8, 112725, 21, 341617, 2418117, 2431, 322628, 2914, 309, 15, 2024, 38331933216237, 382612, 2213cytosolRPL14 RPS12 acceptorRPL37 FAD L-SerMAT1A multimersRPS4X RPS15A RPL34 RPL7A FAU RPL6 5S rRNA RPL39 80S:Met-tRNAi:mRNARPS3 RPL35A ATPPAPSS2 RPL12 RPS13 RPL7 RPL14 RPS27 RPS18 AdoHcyL-AlaGSHRPS5 RPL10 RPL18 Sec-tRNA(Sec):EEFSEC:GTPRPL27A NADPHPPi28S rRNA RPS5 RPS27A(77-156) RPS5 PAPRPS12 RPL31 EEFSEC:GDPNADP+TXNRD1 RPS7 RPS29 RPS8 SecSELPSECISBP2 RPL24 RPS17 RPLP2 RPS9 ATPH+H2OSEPSECStetramer:PXLPRPL36A Ceruloplasmin mRNA GSSeHRPS23 RPL31 MeHist RPL22L1 RPS29 PSTK RPS15 RPS10 NADP+AdoHcyRPLP2 PSTK:Mg2+RPL36AL Sec-tRNA(Sec) RPS16 RPS20 PAPSS1,2RPL4 PAPSS1 RPS11 RPS21 RPS3 RPS14 Sec-tRNA(Sec)RPL5 ATPRPS7 H+SEPHS2NADPHRPL23A 80S:Met-tRNAi:mRNA:SECISBP2:SecRPS21 H2ORPS4Y2 RPS6 PXLP H2ORPS15A RPL11 RPS26 AdoSeMetHSeMTGDP RPS20 FAD RPS18 RPS3 AMPRPL41 RPL8 GSR-2:FAD dimer18S rRNA RPS2 FAU GTP RPL39 RPS4Y2 RPL9 H2ORPS15A EPRS RPS26 RPL3 RPS25 NADP+RPS19 Mg2+ RPL29 H2ORPS8 PiSeCystaH2ORPL18 CBS tetramerRPS16 RPL8 RPL10 RPS28 RPL40 RPL37 RPL36A GSHMeSeOHRPS27 AIMP2 2-acetamidoglucalHist,NAM,GlyEEFSEC H+RPL10L INMTRPS15 TXNRD1 2OBUTARPL39L RPL35 RPSA AdoMetRPS2 RPL36AL RPS10 Met-tRNAi RPS11 SARS dimerRPL18A Ade-RibATPSec MeSeHMTRPL35 SeMetRPL4 H+5.8S rRNA RPS4X 28S rRNA Ser-tRNA(Sec)RPS24 PAPSeAdeSeHCysRPS3A SCLY dimer:PXLPRPS6 EEFSEC RPL13A RPLP1 RPL17 RPL27 NADP+H+RPL34 SeO3(2-)GTP RPS27A(77-156) SCLY 5S rRNA RPL38 FAU NH3RPS29 RPL31 RPL9 EEFSEC:GTPRPL30 PiPiRPL22 MSDMRPLP0 MAT1A RPL41 TXNRD1 RPL18A ATPRPL10A KARS GTP MeOHRPL23 RPL32 RPL40 IARS heme RPL5 RPL30 RPL4 RPS23 AdoHcyNADPHCTH tetramer:PXLPNH3Sec-tRNA(Sec) RPL36A RPL28 RPL32 RPL23 RPS23 RPL13 RPL26L1 RPS4Y1 RPLP1 NAM 28S rRNA reduced acceptorGSHRPL39 RPL30 H3PO4NADP+RPLP2 RPL13A ATPAdoMetCTH RPL22L1 RPLP0 ADPRPL7 SECISBP2RPL6 RPS27L RPL3L RPL10 PXLP 18S rRNA RPL26L1 GSSGRPS16 PAPSeRMet-tRNAi Ceruloplasmin mRNA 5S rRNA RPS8 2OBUTARPS13 GSSebGalNacRPL27 RPL7 RPS19 SARS RPS24 RPSA NADPHRPL22 Mg2+ K+ PAPSS1,2RPL23A L-SerMNA AHCYGSHRPS13 RPL15 RPS26 RPL35A AdoHcyRPL9 RPL26 AIMP1(1-312) FAD TNXRD1:FAD dimerRPL34 RPS27 SeMet-tRNA(Met)RPL32 RPL18 RPS4X RPL21 RPL24 RPS4Y2 RPS17 RPL11 RPS12 RPL17 RPL37A Sep-tRNA(Sec)RPS6 RPS27L RPL36 EEF1E1 MeSeHRPL36 RPS9 tRNA(Met)RPL15 RPL3L H2OCTH RPL27A TNXRD1:FAD dimerH2SeO4RPLP0 FAD H2OH2ORPL3 RPL41 RPL29 RPL19 H+5.8S rRNA RPL38 PAPSS1 RPL27A aminoacyl-tRNAsynthetasemultienzyme complexRPS14 RPL26L1 RPL37A RPS7 RPS20 RPL11 RPL7A SeHCysRPL15 PXLP PXLP RPL3 RPL27 RPS18 RPL10L RPL26 RPL21 RPL10A RARS RPL13 Hist QARS SARC AMPGSR-2 MeSebGalNacRPL38 MARS bGalNAcRPS27L RPL35 RPL24 PPiRPL13A RPS27A(77-156) RPL35A RPL17 H2OGSSGPPiNNMT RPL22 RPS25 RPS17 AMPRPS10 RPL10L RPSA RPS4Y1 bGalNAc derivativeRPL37 RPS14 ADPSECISBP2 LARS RPL19 Me2SeATPRPL18A RPL6 RPL3L PPiCTH tetramer:PXLPRPL21 H2OtRNA(Sec)H2O18S rRNA MetTrans(1)RPL23A EEFSEC RPL37A RPS28 80S:Met-tRNAi:mRNA:SECISBP2:Sec-tRNA(Sec):EEFSEC:GTPRPL28 TNXRD1:FAD dimerRPL39L RPLP1 RPL12 pyruvic acidRPS21 RPL7A H2OMet-tRNAi Ceruloplasmin mRNA MeSecSEPSECS RPS24 H2SeAPSeH2OGNMT RPL10A 5.8S rRNA MeSeO2HRPL14 RPL29 RPS15 RPL22L1 RPL19 RPL36AL RPS3A GSSeSGRPL40 MeHist,N1MNA,MeGlyPXLP-CBS RPL36 RPL13 NADPHRPL26 RPS25 RPL5 RPS28 RPL12 RPL23 RPS2 RPS3A Me3Se+RPL28 EEFSEC AdoMetHNMT RPL39L RPS4Y1 PAPSS2 RPL8 H+RPS11 DARS Gly RPS19 RPS9 6


Description

Selenium (Se) is a trace element essential for the normal function of the body. Selenoamino acids are defined as those amino acids where selenium has been substituted for sulphur. Selenium and sulphur share many chemical properties and so the substitution of normal amino acids with selenoamino acids has little effect on protein structure and function. Both inorganic (selenite, SeO3(2-); and selenate, SeO4(2-)) and organic (selenocysteine, Sec; and selenomethionine, SeMet) forms of selenium can be introduced in the diet where they are transformed into the intermediate selenide (Se(2-)) and then utilized for the de novo synthesis of Sec through a phosphorylated intermediate in a tRNA-dependent fashion. The final step of Sec formation is catalyzed by O-phosphoseryl-tRNA:selenocysteinyl-tRNA synthase (SEPSECS) that converts phosphoseryl-tRNA(Sec) to selenocysteinyl-tRNA(Sec).

All nutritional selenium is metabolised into selenide directly or through methylselenol (MeSeH). Sec liberated from selenoproteins is transformed to Se(2-) by selenocysteine lyase (SCLY). SeMet liberated from general proteins and from free SeMet sources is transformed into Se(2-) either through MeSeH by cystathionine gamma-lyase (CTH) followed by demethylation (SeMet to CH3SeH to H2Se), or through Sec by SCLY after the trans-selenation pathway (SeMet to Sec to H2Se). MeSec is hydrolysed into MeSeH by CTH. Methylseleninic acid (MeSeO2H) is reduced to methylselenol. MeSeH is demethylated to Se(2-) for further utilization for selenoprotein synthesis or oxidised to selenite (SeO3(2-)) for excretion in the form of selenosugar. Additionally, MeSeH is further methylated to dimethylselenide (Me2Se) and trimethylselenonium (Me3Se+) for excretion. View original pathway at:Reactome.

Comments

Reactome-Converter 
Pathway is converted from Reactome ID: 2408522
Reactome-version 
Reactome version: 61
Reactome Author 
Reactome Author: Williams, MG

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Okuno T, Kubota T, Kuroda T, Ueno H, Nakamuro K.; ''Contribution of enzymic alpha, gamma-elimination reaction in detoxification pathway of selenomethionine in mouse liver.''; PubMed Europe PMC
  2. Bánszky L, Simonics T, Maráz A.; ''Sulphate metabolism of selenate-resistant Schizosaccharomyces pombe mutants.''; PubMed Europe PMC
  3. Kajander EO, Harvima RJ, Eloranta TO, Martikainen H, Kantola M, Kärenlampi SO, Akerman K.; ''Metabolism, cellular actions, and cytotoxicity of selenomethionine in cultured cells.''; PubMed Europe PMC
  4. Eustice DC, Kull FJ, Shrift A.; ''Selenium toxicity: aminoacylation and Peptide bond formation with selenomethionine.''; PubMed Europe PMC
  5. Chavatte L, Brown BA, Driscoll DM.; ''Ribosomal protein L30 is a component of the UGA-selenocysteine recoding machinery in eukaryotes.''; PubMed Europe PMC
  6. Fagegaltier D, Hubert N, Yamada K, Mizutani T, Carbon P, Krol A.; ''Characterization of mSelB, a novel mammalian elongation factor for selenoprotein translation.''; PubMed Europe PMC
  7. Daher R, Van Lente F.; ''Characterization of selenocysteine lyase in human tissues and its relationship to tissue selenium concentrations.''; PubMed Europe PMC
  8. Kobayashi Y, Ogra Y, Ishiwata K, Takayama H, Aimi N, Suzuki KT.; ''Selenosugars are key and urinary metabolites for selenium excretion within the required to low-toxic range.''; PubMed Europe PMC
  9. Venkatachalam KV, Akita H, Strott CA.; ''Molecular cloning, expression, and characterization of human bifunctional 3'-phosphoadenosine 5'-phosphosulfate synthase and its functional domains.''; PubMed Europe PMC
  10. Heckl M, Busch K, Gross HJ.; ''Minimal tRNA(Ser) and tRNA(Sec) substrates for human seryl-tRNA synthetase: contribution of tRNA domains to serylation and tertiary structure.''; PubMed Europe PMC
  11. Xu ZH, Otterness DM, Freimuth RR, Carlini EJ, Wood TC, Mitchell S, Moon E, Kim UJ, Xu JP, Siciliano MJ, Weinshilboum RM.; ''Human 3'-phosphoadenosine 5'-phosphosulfate synthetase 1 (PAPSS1) and PAPSS2: gene cloning, characterization and chromosomal localization.''; PubMed Europe PMC
  12. Amberg R, Mizutani T, Wu XQ, Gross HJ.; ''Selenocysteine synthesis in mammalia: an identity switch from tRNA(Ser) to tRNA(Sec).''; PubMed Europe PMC
  13. Björnstedt M, Kumar S, Holmgren A.; ''Selenodiglutathione is a highly efficient oxidant of reduced thioredoxin and a substrate for mammalian thioredoxin reductase.''; PubMed Europe PMC
  14. Wolfe CL, Warrington JA, Davis S, Green S, Norcum MT.; ''Isolation and characterization of human nuclear and cytosolic multisynthetase complexes and the intracellular distribution of p43/EMAPII.''; PubMed Europe PMC
  15. Carlson BA, Xu XM, Kryukov GV, Rao M, Berry MJ, Gladyshev VN, Hatfield DL.; ''Identification and characterization of phosphoseryl-tRNA[Ser]Sec kinase.''; PubMed Europe PMC
  16. Okuno T, Motobayashi S, Ueno H, Nakamuro K.; ''Purification and characterization of mouse hepatic enzyme that converts selenomethionine to methylselenol by its alpha,gamma-elimination.''; PubMed Europe PMC
  17. Gromer S, Gross JH.; ''Methylseleninate is a substrate rather than an inhibitor of mammalian thioredoxin reductase. Implications for the antitumor effects of selenium.''; PubMed Europe PMC
  18. Yu M, Martin RL, Jain S, Chen LJ, Segel IH.; ''Rat liver ATP-sulfurylase: purification, kinetic characterization, and interaction with arsenate, selenate, phosphate, and other inorganic oxyanions.''; PubMed Europe PMC
  19. Yuan J, Palioura S, Salazar JC, Su D, O'Donoghue P, Hohn MJ, Cardoso AM, Whitman WB, Söll D.; ''RNA-dependent conversion of phosphoserine forms selenocysteine in eukaryotes and archaea.''; PubMed Europe PMC
  20. Suzuki KT, Somekawa L, Suzuki N.; ''Distribution and reuse of 76Se-selenosugar in selenium-deficient rats.''; PubMed Europe PMC
  21. Suzuki KT, Kurasaki K, Suzuki N.; ''Selenocysteine beta-lyase and methylselenol demethylase in the metabolism of Se-methylated selenocompounds into selenide.''; PubMed Europe PMC
  22. Vincent C, Tarbouriech N, Härtlein M.; ''Genomic organization, cDNA sequence, bacterial expression, and purification of human seryl-tRNA synthase.''; PubMed Europe PMC
  23. Hsieh HS, Ganther HE.; ''Biosynthesis of dimethyl selenide from sodium selenite in rat liver and kidney cell-free systems.''; PubMed Europe PMC
  24. Palioura S, Sherrer RL, Steitz TA, Söll D, Simonovic M.; ''The human SepSecS-tRNASec complex reveals the mechanism of selenocysteine formation.''; PubMed Europe PMC
  25. Kajander EO, Harvima RJ, Kauppinen L, Akerman KK, Martikainen H, Pajula RL, Kärenlampi SO.; ''Effects of selenomethionine on cell growth and on S-adenosylmethionine metabolism in cultured malignant cells.''; PubMed Europe PMC
  26. Tamura T, Yamamoto S, Takahata M, Sakaguchi H, Tanaka H, Stadtman TC, Inagaki K.; ''Selenophosphate synthetase genes from lung adenocarcinoma cells: Sps1 for recycling L-selenocysteine and Sps2 for selenite assimilation.''; PubMed Europe PMC
  27. Sun QA, Wu Y, Zappacosta F, Jeang KT, Lee BJ, Hatfield DL, Gladyshev VN.; ''Redox regulation of cell signaling by selenocysteine in mammalian thioredoxin reductases.''; PubMed Europe PMC
  28. Kajander EO, Raina AM.; ''Affinity-chromatographic purification of S-adenosyl-L-homocysteine hydrolase. Some properties of the enzyme from rat liver.''; PubMed Europe PMC
  29. Esaki N, Nakamura T, Tanaka H, Suzuki T, Morino Y, Soda K.; ''Enzymatic synthesis of selenocysteine in rat liver.''; PubMed Europe PMC
  30. Pinto JT, Lee JI, Sinha R, MacEwan ME, Cooper AJ.; ''Chemopreventive mechanisms of α-keto acid metabolites of naturally occurring organoselenium compounds.''; PubMed Europe PMC
  31. Kumar S, Björnstedt M, Holmgren A.; ''Selenite is a substrate for calf thymus thioredoxin reductase and thioredoxin and elicits a large non-stoichiometric oxidation of NADPH in the presence of oxygen.''; PubMed Europe PMC
  32. Mozier NM, McConnell KP, Hoffman JL.; ''S-adenosyl-L-methionine:thioether S-methyltransferase, a new enzyme in sulfur and selenium metabolism.''; PubMed Europe PMC
  33. Burnell JN.; ''Methionyl-tRNA Synthetase from Phaseolus aureus: Purification and Properties.''; PubMed Europe PMC
  34. Omi R, Kurokawa S, Mihara H, Hayashi H, Goto M, Miyahara I, Kurihara T, Hirotsu K, Esaki N.; ''Reaction mechanism and molecular basis for selenium/sulfur discrimination of selenocysteine lyase.''; PubMed Europe PMC
  35. Tujebajeva RM, Copeland PR, Xu XM, Carlson BA, Harney JW, Driscoll DM, Hatfield DL, Berry MJ.; ''Decoding apparatus for eukaryotic selenocysteine insertion.''; PubMed Europe PMC
  36. Fairweather-Tait SJ, Bao Y, Broadley MR, Collings R, Ford D, Hesketh JE, Hurst R.; ''Selenium in human health and disease.''; PubMed Europe PMC
  37. Ohta Y, Suzuki KT.; ''Methylation and demethylation of intermediates selenide and methylselenol in the metabolism of selenium.''; PubMed Europe PMC
  38. Okuno T, Ueno H, Nakamuro K.; ''Cystathionine gamma-lyase contributes to selenomethionine detoxification and cytosolic glutathione peroxidase biosynthesis in mouse liver.''; PubMed Europe PMC

History

View all...
CompareRevisionActionTimeUserComment
101347view11:23, 1 November 2018ReactomeTeamreactome version 66
100885view20:57, 31 October 2018ReactomeTeamreactome version 65
100426view19:31, 31 October 2018ReactomeTeamreactome version 64
99976view16:15, 31 October 2018ReactomeTeamreactome version 63
99530view14:51, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
99168view12:42, 31 October 2018ReactomeTeamreactome version 62
93759view13:34, 16 August 2017ReactomeTeamreactome version 61
93281view11:19, 9 August 2017ReactomeTeamreactome version 61
87653view08:55, 25 July 2016LindarieswijkOntology Term : 'selenoamino acid metabolic pathway' added !
86360view09:16, 11 July 2016ReactomeTeamNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
18S rRNA ProteinX03205 (EMBL)
2-acetamidoglucalMetaboliteCHEBI:73979 (ChEBI)
28S rRNA ProteinM11167 (EMBL)
2OBUTAMetaboliteCHEBI:30831 (ChEBI)
5.8S rRNA ProteinJ01866 (EMBL)
5S rRNA ProteinV00589 (EMBL)
80S:Met-tRNAi:mRNA:SECISBP2:Sec-tRNA(Sec):EEFSEC:GTPComplexR-HSA-5359044 (Reactome)
80S:Met-tRNAi:mRNA:SECISBP2:SecComplexR-HSA-5359053 (Reactome)
80S:Met-tRNAi:mRNAComplexR-HSA-72505 (Reactome)
ADPMetaboliteCHEBI:16761 (ChEBI)
AHCYProtein