Selenoamino acid metabolism (Homo sapiens)

From WikiPathways

Revision as of 20:57, 31 October 2018 by ReactomeTeam (Talk | contribs)
Jump to: navigation, search
211, 2419, 34, 3512, 17, 22261031332272713117, 368, 384, 15, 29919, 34, 3518, 3120221116, 336, 24261, 2425, 3723213326, 1428, 30cytosolTNXRD1:FAD dimerMeSeOHRPS26 RPL28 SARC TNXRD1:FAD dimerSARS dimerPAPSeRPS3A RPL9 ATPRPL21 PiPPiRPL6 PAPSS1 SEPHS2RPL28 SecFAD H2O80S:Met-tRNAi:mRNA:SECISBP2:SecMe3Se+RPS6 CBS tetramerNNMT RPL15 RPS23 QARS RPS27A(77-156) RPS15A RPS2 RPL7A RPL22 FAD RPS18 EEFSEC RPL3L L-SerGSR-2:FAD dimerFAU SeMet-tRNA(Met)PXLP H+SECISBP2RPL26L1 CTH tetramer:PXLPRPL14 Met-tRNAi H+RPL9 GSSeHRPS13 H2ORPL39L Ceruloplasmin mRNA RPS19 H+RPS8 RPL13 RPL36AL RPL35A RPL40 RPL41 PXLP-CBS Gly MNA RPL38 RPS4Y1 RPL18A 2-acetamidoglucalHSeMTH+RPS3A NADP+RPL27A RPL39 tRNA(Sec)RPS25 RPL10L Ceruloplasmin mRNA H+Mg2+ RPL12 RPS4Y1 GSHRPS10 RPS27A(77-156) EEFSEC:GDPRPS6 RPL13 PSTK RPL11 RPS23 RPS9 RPL23A NADP+PAPSS2 RPS27 SeMetH2SeRPLP1 RPL6 RPS9 RPS2 RPL41 RPS4Y2 AHCYRPL17 MeSecAdoMetRPS4Y2 RPS15A 5.8S rRNA RPL27A RPL5 RPL40 RPL27 NADP+RPS16 RPS24 RPS26 MeHist H+RPL23 NADPHRPS27L RPL29 SeHCysRPS23 RPL7A RPL27 bGalNAcRPS27L RPL4 RPL5 RPL26 SCLY dimer:PXLPNH3RPLP0 PPiRPS4Y1 RPL37A RPL6 5S rRNA RPL10 ATPH3PO4FAD 5S rRNA RPS20 EEFSEC RPS10 adenosine5'-monophosphateTXNRD1 SECISBP2 RPLP1 RPS25 RPL36AL RPL29 RPS15 TNXRD1:FAD dimerH2ORPS17 RPS21 AdoMetMetTrans(1)MeSebGalNacPSTK:Mg2+RPL7 RPL18 PiADPRPLP2 SCLY RPL37A RPS7 AdoSeMetPAPSeRRPS20 RPL3 RPL4 RPL29 MARS PiH2ORPS5 28S rRNA NADPHEEFSEC Ade-RibGDP RPL37 RPS28 RPS15 RPL3L RPS4X H+ATPRPL18 RPS13 RPL40 RPL28 RPL3 HNMT H2SeO4RPL19 GSSeSGSep-tRNA(Sec)PPiRPL24 SARS RPS3A GTP RPL3L RPL35 SELPINMTH2ORPL35 RPL13A 28S rRNA NH3RPL32 SEPSECS EEFSEC:GTPRPL12 RPLP0 RPL26 RPL26L1 MeSeHH2ORPS8 RPL22L1 GNMT AdoMetRPL10L RPLP0 RPL19 AIMP1(1-312) RPL34 MeSeHMTMeSeO2HTXNRD1 28S rRNA MAT1A RPS8 RPL38 RPS18 CTH RPS12 RPS29 RPS18 RPL27 adenosine5'-monophosphateRPS28 EEF1E1 RPS7 RPL21 RPS9 RPS14 K+ RPS14 MSDMMg2+ NADPHRPL7 RPL23 RPL39L RPL36A RPL30 RPL18A RPS19 RPL5 RPL22L1 RPL37 RPS17 RPL26 PXLP RPS11 80S:Met-tRNAi:mRNA:SECISBP2:Sec-tRNA(Sec):EEFSEC:GTPRPS19 CTH tetramer:PXLPRPS11 MAT1A multimers5S rRNA H2ORPS6 RPL22 RPS20 Hist,NAM,GlyAPSeRPS12 AdoHcy18S rRNA 18S rRNA RPS2 RPL7 RPS10 GSSGGSHRPL19 RPL31 L-AlaRPL8 RPL10A SEPSECStetramer:PXLPRPL24 RPL13 RPL24 RPS27L MeHist,N1MNA,MeGlyRPL35A GSSebGalNacRPL32 PAPSS2 PXLP AdeSeHCysRPL38 RPL15 bGalNAc derivativeRPL35A RPS3 AdoHcyRPL35 Sec RPS28 RPL9 RPL36A RPS26 Hist RPL32 RPS27 NADPHIARS RPL7A RPS13 RPL31 RPS15A Met-tRNAi NAM RPL17 RPS14 RPL23A RPL11 EEFSEC GSHEPRS H2OSec-tRNA(Sec) RPL30 RPS27A(77-156) RPL15 RPL39L PAPSS1 RPS24 Sec-tRNA(Sec):EEFSEC:GTPFAU AIMP2 RPS4Y2 RPS4X RPL10 RPL36AL RPSA RPL8 PAPRPS17 H2ORPL14 FAD RPSA PAPSS1,2RPL10 ATPRPL39 FAU RPLP2 KARS RPL27A RPL10A tRNA(Met)PXLP RPS21 heme CTH Sec-tRNA(Sec) NADPHRPLP1 SECISBP2 RPL22 RPL13A RPS4X MeOHRPL12 RPL30 18S rRNA RPL41 H2ORPS16 RPS16 RPS5 ADPRPS12 RPS25 5.8S rRNA ATPRPL23A L-SerRPL37A RPL10A RPL3 aminoacyl-tRNAsynthetasemultienzyme complexH2ORPL10L RPL39 RPS7 2OBUTARPL23 RPL18A GSR-2 RPS15 80S:Met-tRNAi:mRNAGTP RPLP2 TXNRD1 SeO3(2-)AdoHcyRPS3 RPL36 AdoHcyMe2SeRPL14 PAPSS1,2RPS29 RPS3 Ceruloplasmin mRNA RPS27 RPL26L1 RPL4 2OBUTAGSHSeCystaRPL31 adenosine5'-monophosphateRPL11 RPL17 Sec-tRNA(Sec)H2ORPL13A LARS ATPRPS21 RPL22L1 GSSGMet-tRNAi RPL8 RPL18 GTP RPS24 RPL34 RARS RPL34 H2ONADP+NADP+acceptorreduced acceptorATPRPL37 RPS11 H2ORPL36 Ser-tRNA(Sec)DARS pyruvic acidRPS29 5.8S rRNA PPiRPL36 RPL36A RPSA RPS5 RPL21 5


Selenium (Se) is a trace element essential for the normal function of the body. Selenoamino acids are defined as those amino acids where selenium has been substituted for sulphur. Selenium and sulphur share many chemical properties and so the substitution of normal amino acids with selenoamino acids has little effect on protein structure and function. Both inorganic (selenite, SeO3(2-); and selenate, SeO4(2-)) and organic (selenocysteine, Sec; and selenomethionine, SeMet) forms of selenium can be introduced in the diet where they are transformed into the intermediate selenide (Se(2-)) and then utilized for the de novo synthesis of Sec through a phosphorylated intermediate in a tRNA-dependent fashion. The final step of Sec formation is catalyzed by O-phosphoseryl-tRNA:selenocysteinyl-tRNA synthase (SEPSECS) that converts phosphoseryl-tRNA(Sec) to selenocysteinyl-tRNA(Sec).

All nutritional selenium is metabolised into selenide directly or through methylselenol (MeSeH). Sec liberated from selenoproteins is transformed to Se(2-) by selenocysteine lyase (SCLY). SeMet liberated from general proteins and from free SeMet sources is transformed into Se(2-) either through MeSeH by cystathionine gamma-lyase (CTH) followed by demethylation (SeMet to CH3SeH to H2Se), or through Sec by SCLY after the trans-selenation pathway (SeMet to Sec to H2Se). MeSec is hydrolysed into MeSeH by CTH. Methylseleninic acid (MeSeO2H) is reduced to methylselenol. MeSeH is demethylated to Se(2-) for further utilization for selenoprotein synthesis or oxidised to selenite (SeO3(2-)) for excretion in the form of selenosugar. Additionally, MeSeH is further methylated to dimethylselenide (Me2Se) and trimethylselenonium (Me3Se+) for excretion. View original pathway at:Reactome.


Pathway is converted from Reactome ID: 2408522
Reactome version: 65
Reactome Author 
Reactome Author: Williams, MG

Quality Tags

Ontology Terms



View all...
  1. Okuno T, Kubota T, Kuroda T, Ueno H, Nakamuro K.; ''Contribution of enzymic alpha, gamma-elimination reaction in detoxification pathway of selenomethionine in mouse liver.''; PubMed Europe PMC Scholia
  2. Bánszky L, Simonics T, Maráz A.; ''Sulphate metabolism of selenate-resistant Schizosaccharomyces pombe mutants.''; PubMed Europe PMC Scholia
  3. Kajander EO, Harvima RJ, Eloranta TO, Martikainen H, Kantola M, Kärenlampi SO, Akerman K.; ''Metabolism, cellular actions, and cytotoxicity of selenomethionine in cultured cells.''; PubMed Europe PMC Scholia
  4. Eustice DC, Kull FJ, Shrift A.; ''Selenium toxicity: aminoacylation and Peptide bond formation with selenomethionine.''; PubMed Europe PMC Scholia
  5. Chavatte L, Brown BA, Driscoll DM.; ''Ribosomal protein L30 is a component of the UGA-selenocysteine recoding machinery in eukaryotes.''; PubMed Europe PMC Scholia
  6. Fagegaltier D, Hubert N, Yamada K, Mizutani T, Carbon P, Krol A.; ''Characterization of mSelB, a novel mammalian elongation factor for selenoprotein translation.''; PubMed Europe PMC Scholia
  7. Daher R, Van Lente F.; ''Characterization of selenocysteine lyase in human tissues and its relationship to tissue selenium concentrations.''; PubMed Europe PMC Scholia
  8. Kobayashi Y, Ogra Y, Ishiwata K, Takayama H, Aimi N, Suzuki KT.; ''Selenosugars are key and urinary metabolites for selenium excretion within the required to low-toxic range.''; PubMed Europe PMC Scholia
  9. Venkatachalam KV, Akita H, Strott CA.; ''Molecular cloning, expression, and characterization of human bifunctional 3'-phosphoadenosine 5'-phosphosulfate synthase and its functional domains.''; PubMed Europe PMC Scholia
  10. Heckl M, Busch K, Gross HJ.; ''Minimal tRNA(Ser) and tRNA(Sec) substrates for human seryl-tRNA synthetase: contribution of tRNA domains to serylation and tertiary structure.''; PubMed Europe PMC Scholia
  11. Xu ZH, Otterness DM, Freimuth RR, Carlini EJ, Wood TC, Mitchell S, Moon E, Kim UJ, Xu JP, Siciliano MJ, Weinshilboum RM.; ''Human 3'-phosphoadenosine 5'-phosphosulfate synthetase 1 (PAPSS1) and PAPSS2: gene cloning, characterization and chromosomal localization.''; PubMed Europe PMC Scholia
  12. Amberg R, Mizutani T, Wu XQ, Gross HJ.; ''Selenocysteine synthesis in mammalia: an identity switch from tRNA(Ser) to tRNA(Sec).''; PubMed Europe PMC Scholia
  13. Björnstedt M, Kumar S, Holmgren A.; ''Selenodiglutathione is a highly efficient oxidant of reduced thioredoxin and a substrate for mammalian thioredoxin reductase.''; PubMed Europe PMC Scholia
  14. Wolfe CL, Warrington JA, Davis S, Green S, Norcum MT.; ''Isolation and characterization of human nuclear and cytosolic multisynthetase complexes and the intracellular distribution of p43/EMAPII.''; PubMed Europe PMC Scholia
  15. Carlson BA, Xu XM, Kryukov GV, Rao M, Berry MJ, Gladyshev VN, Hatfield DL.; ''Identification and characterization of phosphoseryl-tRNA[Ser]Sec kinase.''; PubMed Europe PMC Scholia
  16. Okuno T, Motobayashi S, Ueno H, Nakamuro K.; ''Purification and characterization of mouse hepatic enzyme that converts selenomethionine to methylselenol by its alpha,gamma-elimination.''; PubMed Europe PMC Scholia
  17. Gromer S, Gross JH.; ''Methylseleninate is a substrate rather than an inhibitor of mammalian thioredoxin reductase. Implications for the antitumor effects of selenium.''; PubMed Europe PMC Scholia
  18. Yu M, Martin RL, Jain S, Chen LJ, Segel IH.; ''Rat liver ATP-sulfurylase: purification, kinetic characterization, and interaction with arsenate, selenate, phosphate, and other inorganic oxyanions.''; PubMed Europe PMC Scholia
  19. Yuan J, Palioura S, Salazar JC, Su D, O'Donoghue P, Hohn MJ, Cardoso AM, Whitman WB, Söll D.; ''RNA-dependent conversion of phosphoserine forms selenocysteine in eukaryotes and archaea.''; PubMed Europe PMC Scholia
  20. Suzuki KT, Somekawa L, Suzuki N.; ''Distribution and reuse of 76Se-selenosugar in selenium-deficient rats.''; PubMed Europe PMC Scholia
  21. Suzuki KT, Kurasaki K, Suzuki N.; ''Selenocysteine beta-lyase and methylselenol demethylase in the metabolism of Se-methylated selenocompounds into selenide.''; PubMed Europe PMC Scholia
  22. Vincent C, Tarbouriech N, Härtlein M.; ''Genomic organization, cDNA sequence, bacterial expression, and purification of human seryl-tRNA synthase.''; PubMed Europe PMC Scholia
  23. Hsieh HS, Ganther HE.; ''Biosynthesis of dimethyl selenide from sodium selenite in rat liver and kidney cell-free systems.''; PubMed Europe PMC Scholia
  24. Palioura S, Sherrer RL, Steitz TA, Söll D, Simonovic M.; ''The human SepSecS-tRNASec complex reveals the mechanism of selenocysteine formation.''; PubMed Europe PMC Scholia
  25. Kajander EO, Harvima RJ, Kauppinen L, Akerman KK, Martikainen H, Pajula RL, Kärenlampi SO.; ''Effects of selenomethionine on cell growth and on S-adenosylmethionine metabolism in cultured malignant cells.''; PubMed Europe PMC Scholia
  26. Tamura T, Yamamoto S, Takahata M, Sakaguchi H, Tanaka H, Stadtman TC, Inagaki K.; ''Selenophosphate synthetase genes from lung adenocarcinoma cells: Sps1 for recycling L-selenocysteine and Sps2 for selenite assimilation.''; PubMed Europe PMC Scholia
  27. Sun QA, Wu Y, Zappacosta F, Jeang KT, Lee BJ, Hatfield DL, Gladyshev VN.; ''Redox regulation of cell signaling by selenocysteine in mammalian thioredoxin reductases.''; PubMed Europe PMC Scholia
  28. Kajander EO, Raina AM.; ''Affinity-chromatographic purification of S-adenosyl-L-homocysteine hydrolase. Some properties of the enzyme from rat liver.''; PubMed Europe PMC Scholia
  29. Esaki N, Nakamura T, Tanaka H, Suzuki T, Morino Y, Soda K.; ''Enzymatic synthesis of selenocysteine in rat liver.''; PubMed Europe PMC Scholia
  30. Pinto JT, Lee JI, Sinha R, MacEwan ME, Cooper AJ.; ''Chemopreventive mechanisms of α-keto acid metabolites of naturally occurring organoselenium compounds.''; PubMed Europe PMC Scholia
  31. Kumar S, Björnstedt M, Holmgren A.; ''Selenite is a substrate for calf thymus thioredoxin reductase and thioredoxin and elicits a large non-stoichiometric oxidation of NADPH in the presence of oxygen.''; PubMed Europe PMC Scholia
  32. Mozier NM, McConnell KP, Hoffman JL.; ''S-adenosyl-L-methionine:thioether S-methyltransferase, a new enzyme in sulfur and selenium metabolism.''; PubMed Europe PMC Scholia
  33. Burnell JN.; ''Methionyl-tRNA Synthetase from Phaseolus aureus: Purification and Properties.''; PubMed Europe PMC Scholia
  34. Omi R, Kurokawa S, Mihara H, Hayashi H, Goto M, Miyahara I, Kurihara T, Hirotsu K, Esaki N.; ''Reaction mechanism and molecular basis for selenium/sulfur discrimination of selenocysteine lyase.''; PubMed Europe PMC Scholia
  35. Tujebajeva RM, Copeland PR, Xu XM, Carlson BA, Harney JW, Driscoll DM, Hatfield DL, Berry MJ.; ''Decoding apparatus for eukaryotic selenocysteine insertion.''; PubMed Europe PMC Scholia
  36. Fairweather-Tait SJ, Bao Y, Broadley MR, Collings R, Ford D, Hesketh JE, Hurst R.; ''Selenium in human health and disease.''; PubMed Europe PMC Scholia
  37. Ohta Y, Suzuki KT.; ''Methylation and demethylation of intermediates selenide and methylselenol in the metabolism of selenium.''; PubMed Europe PMC Scholia
  38. Okuno T, Ueno H, Nakamuro K.; ''Cystathionine gamma-lyase contributes to selenomethionine detoxification and cytosolic glutathione peroxidase biosynthesis in mouse liver.''; PubMed Europe PMC Scholia


View all...
101347view11:23, 1 November 2018ReactomeTeamreactome version 66
100885view20:57, 31 October 2018ReactomeTeamreactome version 65
100426view19:31, 31 October 2018ReactomeTeamreactome version 64
99976view16:15, 31 October 2018ReactomeTeamreactome version 63
99530view14:51, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
99168view12:42, 31 October 2018ReactomeTeamreactome version 62
93759view13:34, 16 August 2017ReactomeTeamreactome version 61
93281view11:19, 9 August 2017ReactomeTeamreactome version 61