Selenoamino acid metabolism (Homo sapiens)

From WikiPathways

Revision as of 19:31, 31 October 2018 by ReactomeTeam (Talk | contribs)
Jump to: navigation, search
1520, 28, 29361811, 34148, 26, 3321, 31363724314, 1623321, 4, 2713, 353381031, 341020, 28, 295, 1922, 303637246, 911, 347, 1217218cytosolRPS15 RPS27L MeHist,N1MNA,MeGlyRPS21 RPL7A RPS26 RPL38 FAU KARS RPSA RPL35A EEFSEC:GTPRPS10 RPL3 MeSeO2HGSHSeO3(2-)MeSeHMTGTP RPS11 RPS26 RPL27 RPS27 RPL36 MNA RPL36 RPL12 RPS27L 18S rRNA RPL10 NADP+H2OH2SeCeruloplasmin mRNA RPL26 SECISBP2 RPL19 RPS11 RPS20 FAD SARC RPL7A RPLP2 RPL29 Mg2+ MeSeHRPL7 RPLP2 RPL22 SeMet-tRNA(Met)RPS4Y2 2OBUTARPL31 bGalNAcpyruvic acidRPL35 RPL3L Sec-tRNA(Sec) AdoMetRPL26 MeSecRPL28 Gly RPS28 RPL8 H+PAPSS2 RPL12 FAD RPL26L1 RPS23 TXNRD1 RPL23 GSHAHCYMg2+ RPS2 L-SerRPL18A RPS8 RPS13 RARS SECISBP2RPL22L1 GSHCTH RPL26L1 28S rRNA heme SELPFAD PAPSS2 RPS27A(77-156) 18S rRNA RPS17 PPiADPRPL37A RPL10L RPS27 RPL10A L-AlaRPL23A RPS13 RPL10 TNXRD1:FAD dimerRPS24 RPS3 2-acetamidoglucalAdoMetRPL21 INMTRPL36A RPL11 ATPRPL4 RPL37A H+RPL11 IARS RPL36A RPS15 RPL24 Sec RPL13 PXLP RPS12 RPL28 RPS25 RPS19 ATPH+PAPSS1 RPS24 RPS7 RPS9 RPS3 NADPHRPS8 H2OH2ORPL6 18S rRNA CBS tetramerGSR-2:FAD dimerHist,NAM,GlyRPL23A RPS3A RPL23A RPL37 RPL26L1 ATPadenosine5'-monophosphateH+RPL26 RPL18A RPL27 SEPHS2ATPPXLP RPL17 GSR-2 GTP RPS27 PiH2SeO4RPL3L RPL22L1 80S:Met-tRNAi:mRNA:SECISBP2:SecAdoSeMetRPS4Y2 RPL18 NH3AIMP2 RPL4 QARS RPL27A SEPSECStetramer:PXLPRPL27A TNXRD1:FAD dimeradenosine5'-monophosphatereduced acceptorRPS28 MSDMRPS3A RPS5 ATPRPS29 RPL23 RPL35 PAPRPL7 NAM RPL39L RPS11 RPL39 H+NADPHRPL21 RPL5 RPL4 RPL29 RPS14 RPS3 GTP RPL22L1 NADPHRPL35A AdeSeHCysRPS29 NH3L-SerPAPSS1,2PPiRPL37 RPLP1 SCLY H3PO4RPS3A MetTrans(1)RPL22 RPL28 adenosine5'-monophosphateH+RPL6 RPL18A RPS29 RPS9 RPL13A RPL10L H2OAde-RibAdoMetRPL22 5S rRNA AdoHcyRPL13A GSHRPS15A RPL12 PAPSS1 NADP+EEFSEC RPS4X EPRS ADPSer-tRNA(Sec)FAU Hist RPL19 RPL10L RPL13A RPS26 H2ORPL14 H2OPXLP NADP+RPS20 RPL39 RPL39 RPL18 RPL21 RPL30 RPS6 NNMT H2ORPS6 TXNRD1 RPL19 CTH MARS RPL14 RPL37A RPS28 SeHCysCeruloplasmin mRNA PXLP-CBS RPL27A EEFSEC RPS27A(77-156) APSeCeruloplasmin mRNA GNMT 5S rRNA RPS6 RPS27L RPS16 PPiRPL32 H2ORPS7 RPS23 80S:Met-tRNAi:mRNA:SECISBP2:Sec-tRNA(Sec):EEFSEC:GTPAdoHcy5S rRNA SECISBP2 RPS15A SCLY dimer:PXLPRPS15 MeSeOHRPS9 RPS7 RPSA RPL34 RPL24 GSSeSG2OBUTAaminoacyl-tRNAsynthetasemultienzyme complexRPL40 EEFSEC ATPPiDARS RPL40 RPS16 EEFSEC RPL10A RPS4X FAU H2ORPL15 RPL36A NADP+Sep-tRNA(Sec)AdoHcyMet-tRNAi RPL7A NADP+RPS2 HNMT RPL36 RPL41 PAPSeRRPS17 GDP CTH tetramer:PXLPRPL35 RPL15 RPS10 RPL30 TXNRD1 RPL8 RPS5 H2OH2OSec-tRNA(Sec)RPS15A RPS18 RPS14 NADPHRPL41 GSSGRPL14 LARS RPL32 GSSGMeSebGalNacSecRPL7 RPLP0 MAT1A multimers28S rRNA RPL11 FAD MeHist Me2SeRPL9 RPL5 RPL37 RPL8 RPL23 EEFSEC:GDPRPL15 RPL13 Sec-tRNA(Sec):EEFSEC:GTPRPS10 RPL35A acceptorRPS2 MeOHRPL30 RPL13 RPL36AL 5.8S rRNA RPL6 RPS4Y1 GSSebGalNacRPS16 RPLP0 RPS19 RPL38 ATPRPS4Y1 5.8S rRNA SeCystaTNXRD1:FAD dimerH2OCTH tetramer:PXLPRPS21 H2ORPS25 RPSA RPS13 RPL3L PSTK RPS18 Sec-tRNA(Sec) 80S:Met-tRNAi:mRNA28S rRNA RPS18 SEPSECS RPL10 RPLP2 Met-tRNAi RPL29 RPL31 HSeMTtRNA(Sec)RPS4X MAT1A RPL41 PPiAdoHcyRPS27A(77-156) RPL38 RPL36AL AIMP1(1-312) SARS dimerRPS4Y1 RPL40 PAPSeRPLP0 RPL24 Met-tRNAi RPL3 H+RPLP1 EEF1E1 RPL3 RPL9 RPL10A RPS14 bGalNAc derivativeRPL34 PiMe3Se+RPL27 RPS4Y2 RPS23 RPL34 RPL9 NADPHRPL31 RPL5 PSTK:Mg2+RPL39L RPS5 RPS8 RPS24 RPS25 PXLP GSSeHRPL17 PAPSS1,2H2ORPS17 RPS21 RPL39L RPL36AL RPS12 RPS19 5.8S rRNA RPL32 RPL17 RPS20 K+ RPLP1 RPS12 SARS tRNA(Met)RPL18 SeMet25


Selenium (Se) is a trace element essential for the normal function of the body. Selenoamino acids are defined as those amino acids where selenium has been substituted for sulphur. Selenium and sulphur share many chemical properties and so the substitution of normal amino acids with selenoamino acids has little effect on protein structure and function. Both inorganic (selenite, SeO3(2-); and selenate, SeO4(2-)) and organic (selenocysteine, Sec; and selenomethionine, SeMet) forms of selenium can be introduced in the diet where they are transformed into the intermediate selenide (Se(2-)) and then utilized for the de novo synthesis of Sec through a phosphorylated intermediate in a tRNA-dependent fashion. The final step of Sec formation is catalyzed by O-phosphoseryl-tRNA:selenocysteinyl-tRNA synthase (SEPSECS) that converts phosphoseryl-tRNA(Sec) to selenocysteinyl-tRNA(Sec).

All nutritional selenium is metabolised into selenide directly or through methylselenol (MeSeH). Sec liberated from selenoproteins is transformed to Se(2-) by selenocysteine lyase (SCLY). SeMet liberated from general proteins and from free SeMet sources is transformed into Se(2-) either through MeSeH by cystathionine gamma-lyase (CTH) followed by demethylation (SeMet to CH3SeH to H2Se), or through Sec by SCLY after the trans-selenation pathway (SeMet to Sec to H2Se). MeSec is hydrolysed into MeSeH by CTH. Methylseleninic acid (MeSeO2H) is reduced to methylselenol. MeSeH is demethylated to Se(2-) for further utilization for selenoprotein synthesis or oxidised to selenite (SeO3(2-)) for excretion in the form of selenosugar. Additionally, MeSeH is further methylated to dimethylselenide (Me2Se) and trimethylselenonium (Me3Se+) for excretion. View original pathway at:Reactome.


Pathway is converted from Reactome ID: 2408522
Reactome version: 64
Reactome Author 
Reactome Author: Williams, MG

Quality Tags

Ontology Terms



View all...
  1. Okuno T, Kubota T, Kuroda T, Ueno H, Nakamuro K.; ''Contribution of enzymic alpha, gamma-elimination reaction in detoxification pathway of selenomethionine in mouse liver.''; PubMed Europe PMC Scholia
  2. Bánszky L, Simonics T, Maráz A.; ''Sulphate metabolism of selenate-resistant Schizosaccharomyces pombe mutants.''; PubMed Europe PMC Scholia
  3. Kajander EO, Harvima RJ, Eloranta TO, Martikainen H, Kantola M, Kärenlampi SO, Akerman K.; ''Metabolism, cellular actions, and cytotoxicity of selenomethionine in cultured cells.''; PubMed Europe PMC Scholia
  4. Eustice DC, Kull FJ, Shrift A.; ''Selenium toxicity: aminoacylation and Peptide bond formation with selenomethionine.''; PubMed Europe PMC Scholia
  5. Chavatte L, Brown BA, Driscoll DM.; ''Ribosomal protein L30 is a component of the UGA-selenocysteine recoding machinery in eukaryotes.''; PubMed Europe PMC Scholia
  6. Fagegaltier D, Hubert N, Yamada K, Mizutani T, Carbon P, Krol A.; ''Characterization of mSelB, a novel mammalian elongation factor for selenoprotein translation.''; PubMed Europe PMC Scholia
  7. Daher R, Van Lente F.; ''Characterization of selenocysteine lyase in human tissues and its relationship to tissue selenium concentrations.''; PubMed Europe PMC Scholia
  8. Kobayashi Y, Ogra Y, Ishiwata K, Takayama H, Aimi N, Suzuki KT.; ''Selenosugars are key and urinary metabolites for selenium excretion within the required to low-toxic range.''; PubMed Europe PMC Scholia
  9. Venkatachalam KV, Akita H, Strott CA.; ''Molecular cloning, expression, and characterization of human bifunctional 3'-phosphoadenosine 5'-phosphosulfate synthase and its functional domains.''; PubMed Europe PMC Scholia
  10. Heckl M, Busch K, Gross HJ.; ''Minimal tRNA(Ser) and tRNA(Sec) substrates for human seryl-tRNA synthetase: contribution of tRNA domains to serylation and tertiary structure.''; PubMed Europe PMC Scholia
  11. Xu ZH, Otterness DM, Freimuth RR, Carlini EJ, Wood TC, Mitchell S, Moon E, Kim UJ, Xu JP, Siciliano MJ, Weinshilboum RM.; ''Human 3'-phosphoadenosine 5'-phosphosulfate synthetase 1 (PAPSS1) and PAPSS2: gene cloning, characterization and chromosomal localization.''; PubMed Europe PMC Scholia
  12. Amberg R, Mizutani T, Wu XQ, Gross HJ.; ''Selenocysteine synthesis in mammalia: an identity switch from tRNA(Ser) to tRNA(Sec).''; PubMed Europe PMC Scholia
  13. Björnstedt M, Kumar S, Holmgren A.; ''Selenodiglutathione is a highly efficient oxidant of reduced thioredoxin and a substrate for mammalian thioredoxin reductase.''; PubMed Europe PMC Scholia
  14. Wolfe CL, Warrington JA, Davis S, Green S, Norcum MT.; ''Isolation and characterization of human nuclear and cytosolic multisynthetase complexes and the intracellular distribution of p43/EMAPII.''; PubMed Europe PMC Scholia
  15. Carlson BA, Xu XM, Kryukov GV, Rao M, Berry MJ, Gladyshev VN, Hatfield DL.; ''Identification and characterization of phosphoseryl-tRNA[Ser]Sec kinase.''; PubMed Europe PMC Scholia
  16. Okuno T, Motobayashi S, Ueno H, Nakamuro K.; ''Purification and characterization of mouse hepatic enzyme that converts selenomethionine to methylselenol by its alpha,gamma-elimination.''; PubMed Europe PMC Scholia
  17. Gromer S, Gross JH.; ''Methylseleninate is a substrate rather than an inhibitor of mammalian thioredoxin reductase. Implications for the antitumor effects of selenium.''; PubMed Europe PMC Scholia
  18. Yu M, Martin RL, Jain S, Chen LJ, Segel IH.; ''Rat liver ATP-sulfurylase: purification, kinetic characterization, and interaction with arsenate, selenate, phosphate, and other inorganic oxyanions.''; PubMed Europe PMC Scholia
  19. Yuan J, Palioura S, Salazar JC, Su D, O'Donoghue P, Hohn MJ, Cardoso AM, Whitman WB, Söll D.; ''RNA-dependent conversion of phosphoserine forms selenocysteine in eukaryotes and archaea.''; PubMed Europe PMC Scholia
  20. Suzuki KT, Somekawa L, Suzuki N.; ''Distribution and reuse of 76Se-selenosugar in selenium-deficient rats.''; PubMed Europe PMC Scholia
  21. Suzuki KT, Kurasaki K, Suzuki N.; ''Selenocysteine beta-lyase and methylselenol demethylase in the metabolism of Se-methylated selenocompounds into selenide.''; PubMed Europe PMC Scholia
  22. Vincent C, Tarbouriech N, Härtlein M.; ''Genomic organization, cDNA sequence, bacterial expression, and purification of human seryl-tRNA synthase.''; PubMed Europe PMC Scholia
  23. Hsieh HS, Ganther HE.; ''Biosynthesis of dimethyl selenide from sodium selenite in rat liver and kidney cell-free systems.''; PubMed Europe PMC Scholia
  24. Palioura S, Sherrer RL, Steitz TA, Söll D, Simonovic M.; ''The human SepSecS-tRNASec complex reveals the mechanism of selenocysteine formation.''; PubMed Europe PMC Scholia
  25. Kajander EO, Harvima RJ, Kauppinen L, Akerman KK, Martikainen H, Pajula RL, Kärenlampi SO.; ''Effects of selenomethionine on cell growth and on S-adenosylmethionine metabolism in cultured malignant cells.''; PubMed Europe PMC Scholia
  26. Tamura T, Yamamoto S, Takahata M, Sakaguchi H, Tanaka H, Stadtman TC, Inagaki K.; ''Selenophosphate synthetase genes from lung adenocarcinoma cells: Sps1 for recycling L-selenocysteine and Sps2 for selenite assimilation.''; PubMed Europe PMC Scholia
  27. Sun QA, Wu Y, Zappacosta F, Jeang KT, Lee BJ, Hatfield DL, Gladyshev VN.; ''Redox regulation of cell signaling by selenocysteine in mammalian thioredoxin reductases.''; PubMed Europe PMC Scholia
  28. Kajander EO, Raina AM.; ''Affinity-chromatographic purification of S-adenosyl-L-homocysteine hydrolase. Some properties of the enzyme from rat liver.''; PubMed Europe PMC Scholia
  29. Esaki N, Nakamura T, Tanaka H, Suzuki T, Morino Y, Soda K.; ''Enzymatic synthesis of selenocysteine in rat liver.''; PubMed Europe PMC Scholia
  30. Pinto JT, Lee JI, Sinha R, MacEwan ME, Cooper AJ.; ''Chemopreventive mechanisms of α-keto acid metabolites of naturally occurring organoselenium compounds.''; PubMed Europe PMC Scholia
  31. Kumar S, Björnstedt M, Holmgren A.; ''Selenite is a substrate for calf thymus thioredoxin reductase and thioredoxin and elicits a large non-stoichiometric oxidation of NADPH in the presence of oxygen.''; PubMed Europe PMC Scholia
  32. Mozier NM, McConnell KP, Hoffman JL.; ''S-adenosyl-L-methionine:thioether S-methyltransferase, a new enzyme in sulfur and selenium metabolism.''; PubMed Europe PMC Scholia
  33. Burnell JN.; ''Methionyl-tRNA Synthetase from Phaseolus aureus: Purification and Properties.''; PubMed Europe PMC Scholia
  34. Omi R, Kurokawa S, Mihara H, Hayashi H, Goto M, Miyahara I, Kurihara T, Hirotsu K, Esaki N.; ''Reaction mechanism and molecular basis for selenium/sulfur discrimination of selenocysteine lyase.''; PubMed Europe PMC Scholia
  35. Tujebajeva RM, Copeland PR, Xu XM, Carlson BA, Harney JW, Driscoll DM, Hatfield DL, Berry MJ.; ''Decoding apparatus for eukaryotic selenocysteine insertion.''; PubMed Europe PMC Scholia
  36. Fairweather-Tait SJ, Bao Y, Broadley MR, Collings R, Ford D, Hesketh JE, Hurst R.; ''Selenium in human health and disease.''; PubMed Europe PMC Scholia
  37. Ohta Y, Suzuki KT.; ''Methylation and demethylation of intermediates selenide and methylselenol in the metabolism of selenium.''; PubMed Europe PMC Scholia
  38. Okuno T, Ueno H, Nakamuro K.; ''Cystathionine gamma-lyase contributes to selenomethionine detoxification and cytosolic glutathione peroxidase biosynthesis in mouse liver.''; PubMed Europe PMC Scholia


View all...
101347view11:23, 1 November 2018ReactomeTeamreactome version 66
100885view20:57, 31 October 2018ReactomeTeamreactome version 65
100426view19:31, 31 October 2018ReactomeTeamreactome version 64
99976view16:15, 31 October 2018ReactomeTeamreactome version 63
99530view14:51, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
99168view12:42, 31 October 2018ReactomeTeamreactome version 62
93759view13:34, 16 August 2017ReactomeTeamreactome version 61
93281view11:19, 9 August 2017ReactomeTeamreactome version 61