Spinal Cord Injury (Bos taurus)

From WikiPathways

Revision as of 08:55, 25 July 2016 by Lindarieswijk (Talk | contribs)
Jump to: navigation, search
2722LTBLTB4LGALS3AQP1CD47FECHP1C1QBTNFSF13CDC42MIFPTPRZ1TNFSF13BLTB4RNONGFRPDYNAIF1OBAPEX1CSPG4PLXNA21931304744183853244343423Motor NeuronOligodendrocyteAstroctyeSpinal Cord InjuryTimePro-InflammatoryFactorsZFP36FCGR2CPRB1PTPRAIL1BZFP36INOSTNF28NR4A1IL4BTG2BTG2FBRCDK2NOS1IL2TNFIL6TLR4FOSIL1BTGFB1TLR4TNFEGR1FOSMMP12IFNGGlial ScarAstrocyte GliosisSwelling/EdemaMBPAntigens ReleasedRTN4C5GRO1Neutrophil Chemoattractants37, 40CXCL8NeurtrophilsMonocytesAQP410TTLegendTT:Therapeutic Target (increase)TTTTTT:Therapeutic Target (decrease)T-CellsB-CellsB Cell Stimulating2Activated Microglia/Macrophages(Transient)RepairIL1BINOSTNFARG1TOXIC FERROUSIRONFocal Adensions45, 51EPHA4TTEFNB2TTTTTTTTCXCL10Neuro protectionAntibody ReleaseNeuronalInjuryResponseAstrocyteInjuryResponseG1-S Cell Cycle Re-entry (TT)50CCNG1MicrogliaMicrogliaActivationAxonal RetractionRecruitmentRecruitmentMMP9TT17Chondroitin Sulfate ProteoglycansNCAN14SLIT1Axon RetractionSLIT214SLIT3NTN1RGMATTTTTTTTTTMMP917MMP9MMP917TT17TTTTCCR2IL1R1TT37ECM BreakdownECM BreakdownIL1AGRO1Monocyte Chemoattractants37, 40GRO1CCL2OligodendrocyteInjury ResponsePLA2G6PLA2G5PLA2G2AmelittinInflammationDemyelinationANXA19TTTTTTTTRed Blood CellsMyelinEndothelial LeukocyteAdehsion Factors20ICAM1SELPTTTTPlasticityKLK823TTMicrogliaActivated Microglia/MacrophagesActivated Microglia/MacrophagesGFAPTT17IntermediateFillament26CDK4NK1RE2F5RB1PRKCAE2F1MAPK1CCND1MYCGADD45AMAPK3TTTTTTAstroctyeNeuron & OligodendrocyteApoptosis/NecrosisMicrogliaProliferationTP53CytotoxicCytotoxicCHST11VCANCOL4A1XYLT1COL2A1ACANBCANGlial Scar FromationSOX9Axonal GrowthInhibition26IgG, IgMTP5333TTTTTTGRIN1VIM25TT16T Cell StimulatingFK5062PPP3CA1TTFK5068FK5068GAP43TTFK506Axonal Regeneration8FKBP1AIL2C3 ToxinC1Q and Fc receptive cellsMAGRTN4RHOARHOCRHOBROCK2OMGRTN4RLILRB311MyelinInjury ResponseArachidonic acidPGH2PGHS-246TT39ROS1NOX4bta-mir-23bOlomoucine52CDK1GDNF29TTSEMA6A44TTAxonal GrowthInhibitionGJA148ATP-ReleaseTTBDNFTTImmediate Response Genes502-Methoxyestradiol30TTRAC1TTTTAstroctyeFOXO3TT13CDKN1B13TTN2 Glial Precursor12EGFRPD 168393TT634CASP3TTTT


Description

This pathway provides an overview of cell types, therapeutic targets, drugs, new proposed targets and pathways implicated in spinal cord injury. Spinal cord injury is a complex multistep process that involves the regulation of gene expression and signaling in motor neurons, oligodentrocytes, microglia, and astrocytes that trigger immediate immune responses lasting several weeks. Within 24 hours, chemoattractants and cytokines released from the site of injury activate neutrophils which further recruit B and T cells or recruit monocytes that ultimately result in infiltration and activation by microglia and macrophages. These immune responses result in inflammation, excitotoxicity, cell death, formation of glial scar, and suppression of axonal regeneration. An increase in the expression of cell cycle genes further results in proliferation of astrocytes and microglia that leads to apoptosis and necrosis of oligodentrocytes and neurons. An example therapy is the administration of the immunosuppressant FK506, also used in transplantation to offer neuroprotection.

Comments

HomologyConvert 
This pathway was inferred from Homo sapiens pathway WP2431(80343) with a 97.0% conversion rate.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Eng LF, Ghirnikar RS, Lee YL; ''Glial fibrillary acidic protein: GFAP-thirty-one years (1969-2000).''; Neurochem Res, 2000 PubMed Europe PMC
  2. ''''; , PubMed Europe PMC
  3. Chalimoniuk M, King-Pospisil K, Metz CN, Toborek M; ''Macrophage migration inhibitory factor induces cell death and decreases neuronal nitric oxide expression in spinal cord neurons.''; Neuroscience, 2006 PubMed Europe PMC
  4. Lأ³pez-Vales R, Ghasemlou N, Redensek A, Kerr BJ, Barbayianni E, Antonopoulou G, Baskakis C, Rathore KI, Constantinou-Kokotou V, Stephens D, Shimizu T, Dennis EA, Kokotos G, David S; ''Phospholipase A2 superfamily members play divergent roles after spinal cord injury.''; FASEB J, 2011 PubMed Europe PMC
  5. Dekaban GA, Thawer S; ''Pathogenic antibodies are active participants in spinal cord injury.''; J Clin Invest, 2009 PubMed Europe PMC
  6. ''''; , PubMed Europe PMC
  7. Wu J, Stoica BA, Faden AI; ''Cell cycle activation and spinal cord injury.''; Neurotherapeutics, 2011 PubMed Europe PMC
  8. Huang C, Han X, Li X, Lam E, Peng W, Lou N, Torres A, Yang M, Garre JM, Tian GF, Bennett MV, Nedergaard M, Takano T; ''Critical role of connexin 43 in secondary expansion of traumatic spinal cord injury.''; J Neurosci, 2012 PubMed Europe PMC
  9. Tohda C, Kuboyama T; ''Current and future therapeutic strategies for functional repair of spinal cord injury.''; Pharmacol Ther, 2011 PubMed Europe PMC
  10. Chu GK, Yu W, Fehlings MG; ''The p75 neurotrophin receptor is essential for neuronal cell survival and improvement of functional recovery after spinal cord injury.''; Neuroscience, 2007 PubMed Europe PMC
  11. Tian DS, Dong Q, Pan DJ, He Y, Yu ZY, Xie MJ, Wang W; ''''; , PubMed Europe PMC
  12. McKillop WM, Dragan M, Schedl A, Brown A; ''''; , PubMed Europe PMC
  13. Kitayama M, Ueno M, Itakura T, Yamashita T; ''Activated microglia inhibit axonal growth through RGMa.''; PLoS One, 2011 PubMed Europe PMC
  14. Im YB, Jee MK, Choi JI, Cho HT, Kwon OH, Kang SK; ''''; , PubMed Europe PMC
  15. Zhang S, Huan W, Wei H, Shi J, Fan J, Zhao J, Shen A, Teng H; ''FOXO3a/p27kip1 expression and essential role after acute spinal cord injury in adult rat.''; J Cell Biochem, 2013 PubMed Europe PMC
  16. David S, Kroner A; ''Repertoire of microglial and macrophage responses after spinal cord injury.''; Nat Rev Neurosci, 2011 PubMed Europe PMC
  17. Tonai T, Shiba K, Taketani Y, Ohmoto Y, Murata K, Muraguchi M, Ohsaki H, Takeda E, Nishisho T; ''A neutrophil elastase inhibitor (ONO-5046) reduces neurologic damage after spinal cord injury in rats.''; J Neurochem, 2001 PubMed Europe PMC
  18. Wang YF, Fan ZK, Cao Y, Yu DS, Zhang YQ, Wang YS; ''2-Methoxyestradiol inhibits the up-regulation of AQP4 and AQP1 expression after spinal cord injury.''; Brain Res, 2011 PubMed Europe PMC
  19. Hashimoto M, Ito T, Fukumitsu H, Nomoto H, Furukawa Y, Furukawa S; ''Stimulation of production of glial cell line-derived neurotrophic factor and nitric oxide by lipopolysaccharide with different dose-responsiveness in cultured rat macrophages.''; Biomed Res, 2005 PubMed Europe PMC
  20. Floriddia EM, Rathore KI, Tedeschi A, Quadrato G, Wuttke A, Lueckmann JM, Kigerl KA, Popovich PG, Di Giovanni S; ''''; , PubMed Europe PMC
  21. Saganovأ، K, Gأ،lik J, Blaإ،ko J, Korimovأ، A, Raؤچekovأ، E, Vanickأ½ I; ''''; , PubMed Europe PMC
  22. Pajoohesh-Ganji A, Knoblach SM, Faden AI, Byrnes KR; ''Characterization of inflammatory gene expression and galectin-3 function after spinal cord injury in mice.''; Brain Res, 2012 PubMed Europe PMC
  23. Puschmann TB, Turnley AM; ''''; , PubMed Europe PMC
  24. Erschbamer M, Pernold K, Olson L; ''Inhibiting epidermal growth factor receptor improves structural, locomotor, sensory, and bladder recovery from experimental spinal cord injury.''; J Neurosci, 2007 PubMed Europe PMC
  25. Pajoohesh-Ganji A, Knoblach SM, Faden AI, Byrnes KR; ''Characterization of inflammatory gene expression and galectin-3 function after spinal cord injury in mice.''; Brain Res, 2012 PubMed Europe PMC
  26. Sharma HS; ''''; , PubMed Europe PMC
  27. Fernأ،ndez-Martos CM, Gonzأ،lez P, Rodriguez FJ; ''Acute leptin treatment enhances functional recovery after spinal cord injury.''; PLoS One, 2012 PubMed Europe PMC
  28. Ju P, Zhang S, Yeap Y, Feng Z; ''Induction of neuronal phenotypes from NG2+ glial progenitors by inhibiting epidermal growth factor receptor in mouse spinal cord injury.''; Glia, 2012 PubMed Europe PMC
  29. Resnick DK, Graham SH, Dixon CE, Marion DW; ''Role of cyclooxygenase 2 in acute spinal cord injury.''; J Neurotrauma, 1998 PubMed Europe PMC
  30. Genovese T, Mazzon E, Crisafulli C, Di Paola R, Muiأ  C, Esposito E, Bramanti P, Cuzzocrea S; ''TNF-alpha blockage in a mouse model of SCI: evidence for improved outcome.''; Shock, 2008 PubMed Europe PMC
  31. Jain A, McKeon RJ, Brady-Kalnay SM, Bellamkonda RV; ''Sustained delivery of activated Rho GTPases and BDNF promotes axon growth in CSPG-rich regions following spinal cord injury.''; PLoS One, 2011 PubMed Europe PMC
  32. Fabes J, Anderson P, Yأ،أ±ez-Muأ±oz RJ, Thrasher A, Brennan C, Bolsover S; ''''; , PubMed Europe PMC
  33. Lavezzi AM, Casale V, Oneda R, Weese-Mayer DE, Matturri L; ''Sudden Infant Death Syndrome and Sudden Intrauterine Unexplained Death: Correlation Between Hypoplasia of Raphأƒآ¢أ‚آˆأ‚آڑأƒآکأ‚آ¬أƒآ¯أ‚آ؟أ‚آ½أƒآژأ‚آ©أƒآ¢أ‚آˆأ‚آڑأƒآکأ‚آ¬أƒآ¯أ‚آ؟أ‚آ½أƒآژأ‚آ©أƒآژأ‚آ© Nuclei and Serotonin Transporter Gene Promoter Polymorphism.''; Pediatr Res, 2009 PubMed Europe PMC
  34. Shim SO, Cafferty WB, Schmidt EC, Kim BG, Fujisawa H, Strittmatter SM; ''Plex