Kinesins (Homo sapiens)

From WikiPathways

Revision as of 11:55, 16 July 2014 by ReactomeTeam (Talk | contribs)
Jump to: navigation, search
4, 10, 11, 169, 233, 12, 2421, 19, 2220, 2625158, 14, 275, 216, 7, 13, 17, 18, 20...CENP-E dimer[cytosol]KIF4B homodimer[cytosol]Kinesin-10 [cytosol]Kinesin-2 [cytosol]Kinesin-14 [cytosol]Kinesin-13 dimers[cytosol]KIF15 dimer[cytosol]KIF3A partners[cytosol]KIF4A homodimer[cytosol]MCAK dimer [cytosol]KIF4B homodimer[cytosol]Kinesin-2 [cytosol]Centralspindlin[cytosol]KIF18A dimer[cytosol]KIF2A dimer[cytosol]KIF9 dimer [cytosol]Chromokinesin dimers[cytosol]KIF15 dimer[cytosol]Kinesin-10 [cytosol]KIF3A partners[cytosol]KIF3A partners[cytosol]Kinesin-1 [cytosol]CENP-E dimer[cytosol]Kinesins [cytosol]Kinesin-5homotetramer[cytosol]Kinesin-13 dimers[cytosol]KIF2A dimer[cytosol]KIF18A dimer[cytosol]Kinesin-4 homodimers[cytosol]cytosolKIF4A homodimer[cytosol]Kinesin-5homotetramer[cytosol]Kinesins:microtubule[cytosol]KIF2A dimer[cytosol]KIF2B dimer[cytosol]KIF2B dimer[cytosol]Kinesin-5homotetramer[cytosol]Centralspindlin[cytosol]MCAK dimer [cytosol]Kinesin-1 [cytosol]KIF2B dimer[cytosol]MCAK dimer [cytosol]Chromokinesin dimers[cytosol]KIF4B homodimer[cytosol]Kinesin-1 [cytosol]KIF15 dimer[cytosol]Centralspindlin[cytosol]KIF18A dimer[cytosol]Kinesin-4 homodimers[cytosol]Kinesins [cytosol]Chromokinesin dimers[cytosol]Kinesin-4 homodimers[cytosol]CENP-E dimer[cytosol]Kinesin-2 [cytosol]Kinesin-13 dimers[cytosol]Kinesin-10 [cytosol]KIF4A homodimer[cytosol]KIF2B [cytosol]KIF3B [cytosol]KIF3A [cytosol]KIFC1 [cytosol]KinesinsKIF11 [cytosol]KIFAP3 [cytosol]KIF2B [cytosol]CENPERACGAP1KIF3C [cytosol]Kinesins:microtubuleKIF11 [cytosol]RACGAP1 [cytosol]Kinesin-1 heavychainKIF3AKIF15 [cytosol]KIF18A dimerKinesin-1 lightchainsKIF15 [cytosol]KIF18AKIF26A [cytosol]KIF2A [cytosol]Kinesin-14KIF22 [cytosol]KIF2A [cytosol]KIF4B [cytosol]KIF4A [cytosol]KIFC1KIF3C [cytosol]Kinesin-5homotetramerKIF3A [cytosol]KIF9 dimerCentralspindlinChromokinesinmonomersKIF22 [cytosol]KIF4A [cytosol]KIF3C [cytosol]KIF3A [cytosol]KIF3B [cytosol]CENPE [cytosol]ATPKIF15 dimerKIF9 [cytosol]KIF4A [cytosol]Kinesin-13 monomersKinesin-3 monomersKIFAP3KIF18A [cytosol]KIFAP3 [cytosol]KIF3A partnersKinesin-2CENPE [cytosol]CENPE [cytosol]RACGAP1 [cytosol]KIF4B [cytosol]KIF2C [cytosol]KIF18A [cytosol]KIF4B [cytosol]KIF3B [cytosol]Kinesin-1ADPKIF9KIFAP3 [cytosol]KIF2C [cytosol]KIF11microtubuleKinesin-3 dimersKIF15KIF11 [cytosol]KIF2B [cytosol]Kinesin-6Kinesin-13 dimersRACGAP1 [cytosol]KIF26A [cytosol]KIF22 [cytosol]Chromokinesin dimersKIF18A [cytosol]KIF2C [cytosol]KIF15 [cytosol]CENP-E dimerKIF2A [cytosol]


Kinesins are a superfamily of microtubule-based motor proteins that have diverse functions in transport of vesicles, organelles and chromosomes, and regulate microtubule dynamics. There are 14 families of kinesins, all reprsented in humans. A standardized nomenclature was published in 2004 (Lawrence et al.).Original Pathway at Reactome:

Quality Tags

Ontology Terms



View all...
  1. Nangaku M, Sato-Yoshitake R, Okada Y, Noda Y, Takemura R, Yamazaki H, Hirokawa N.; ''KIF1B, a novel microtubule plus end-directed monomeric motor protein for transport of mitochondria.''; PubMed Europe PMC Scholia
  2. Nislow C, Lombillo VA, Kuriyama R, McIntosh JR.; ''A plus-end-directed motor enzyme that moves antiparallel microtubules in vitro localizes to the interzone of mitotic spindles.''; PubMed Europe PMC Scholia
  3. Sindelar CV, Budny MJ, Rice S, Naber N, Fletterick R, Cooke R.; ''Two conformations in the human kinesin power stroke defined by X-ray crystallography and EPR spectroscopy.''; PubMed Europe PMC Scholia
  4. Navone F, Niclas J, Hom-Booher N, Sparks L, Bernstein HD, McCaffrey G, Vale RD.; ''Cloning and expression of a human kinesin heavy chain gene: interaction of the COOH-terminal domain with cytoplasmic microtubules in transfected CV-1 cells.''; PubMed Europe PMC Scholia
  5. Yang JT, Saxton WM, Stewart RJ, Raff EC, Goldstein LS.; ''Evidence that the head of kinesin is sufficient for force generation and motility in vitro.''; PubMed Europe PMC Scholia
  6. Wordeman L, Mitchison TJ.; ''Identification and partial characterization of mitotic centromere-associated kinesin, a kinesin-related protein that associates with centromeres during mitosis.''; PubMed Europe PMC Scholia
  7. Endow SA, Kull FJ, Liu H.; ''Kinesins at a glance.''; PubMed Europe PMC Scholia
  8. Kuznetsov SA, Vaisberg YA, Rothwell SW, Murphy DB, Gelfand VI.; ''Isolation of a 45-kDa fragment from the kinesin heavy chain with enhanced ATPase and microtubule-binding activities.''; PubMed Europe PMC Scholia
  9. Tokai N, Fujimoto-Nishiyama A, Toyoshima Y, Yonemura S, Tsukita S, Inoue J, Yamamota T.; ''Kid, a novel kinesin-like DNA binding protein, is localized to chromosomes and the mitotic spindle.''; PubMed Europe PMC Scholia
  10. Yang JT, Laymon RA, Goldstein LS.; ''A three-domain structure of kinesin heavy chain revealed by DNA sequence and microtubule binding analyses.''; PubMed Europe PMC Scholia
  11. Hammond JW, Cai D, Blasius TL, Li Z, Jiang Y, Jih GT, Meyhofer E, Verhey KJ.; ''Mammalian Kinesin-3 motors are dimeric in vivo and move by processive motility upon release of autoinhibition.''; PubMed Europe PMC Scholia
  12. Bloom GS, Wagner MC, Pfister KK, Brady ST.; ''Native structure and physical properties of bovine brain kinesin and identification of the ATP-binding subunit polypeptide.''; PubMed Europe PMC Scholia
  13. Cai S, Weaver LN, Ems-McClung SC, Walczak CE.; ''Kinesin-14 family proteins HSET/XCTK2 control spindle length by cross-linking and sliding microtubules.''; PubMed Europe PMC Scholia
  14. Lawrence CJ, Dawe RK, Christie KR, Cleveland DW, Dawson SC, Endow SA, Goldstein LS, Goodson HV, Hirokawa N, Howard J, Malmberg RL, McIntosh JR, Miki H, Mitchison TJ, Okada Y, Reddy AS, Saxton WM, Schliwa M, Scholey JM, Vale RD, Walczak CE, Wordeman L.; ''A standardized kinesin nomenclature.''; PubMed Europe PMC Scholia
  15. Sekine Y, Okada Y, Noda Y, Kondo S, Aizawa H, Takemura R, Hirokawa N.; ''A novel microtubule-based motor protein (KIF4) for organelle transports, whose expression is regulated developmentally.''; PubMed Europe PMC Scholia
  16. Blangy A, Lane HA, d'Hérin P, Harper M, Kress M, Nigg EA.; ''Phosphorylation by p34cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo.''; PubMed Europe PMC Scholia
  17. Mazumdar M, Sundareshan S, Misteli T.; ''Human chromokinesin KIF4A functions in chromosome condensation and segregation.''; PubMed Europe PMC Scholia
  18. Vale RD, Funatsu T, Pierce DW, Romberg L, Harada Y, Yanagida T.; ''Direct observation of single kinesin molecules moving along microtubules.''; PubMed Europe PMC Scholia
  19. Verhey KJ, Hammond JW.; ''Traffic control: regulation of kinesin motors.''; PubMed Europe PMC Scholia
  20. Okada Y, Yamazaki H, Sekine-Aizawa Y, Hirokawa N.; ''The neuron-specific kinesin superfamily protein KIF1A is a unique monomeric motor for anterograde axonal transport of synaptic vesicle precursors.''; PubMed Europe PMC Scholia
  21. Manning AL, Ganem NJ, Bakhoum SF, Wagenbach M, Wordeman L, Compton DA.; ''The kinesin-13 proteins Kif2a, Kif2b, and Kif2c/MCAK have distinct roles during mitosis in human cells.''; PubMed Europe PMC Scholia
  22. Hirokawa N, Noda Y.; ''Intracellular transport and kinesin superfamily proteins, KIFs: structure, function, and dynamics.''; PubMed Europe PMC Scholia
  23. Mayr MI, Hümmer S, Bormann J, Grüner T, Adio S, Woehlke G, Mayer TU.; ''The human kinesin Kif18A is a motile microtubule depolymerase essential for chromosome congression.''; PubMed Europe PMC Scholia
  24. Mishima M, Kaitna S, Glotzer M.; ''Central spindle assembly and cytokinesis require a kinesin-like protein/RhoGAP complex with microtubule bundling activity.''; PubMed Europe PMC Scholia
  25. Brown CL, Maier KC, Stauber T, Ginkel LM, Wordeman L, Vernos I, Schroer TA.; ''Kinesin-2 is a motor for late endosomes and lysosomes.''; PubMed Europe PMC Scholia
  26. Espeut J, Gaussen A, Bieling P, Morin V, Prieto S, Fesquet D, Surrey T, Abrieu A.; ''Phosphorylation relieves autoinhibition of the kinetochore motor Cenp-E.''; PubMed Europe PMC Scholia
  27. Kuznetsov SA, Vaisberg EA, Shanina NA, Magretova NN, Chernyak VY, Gelfand VI.; ''The quaternary structure of bovine brain kinesin.''; PubMed Europe PMC Scholia


View all...
101313view11:20, 1 November 2018ReactomeTeamreactome version 66
100850view20:51, 31 October 2018ReactomeTeamreactome version 65
100391view19:26, 31 October 2018ReactomeTeamreactome version 64
99939view16:10, 31 October 2018ReactomeTeamreactome version 63
99495view14:43, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
99144view12:40, 31 October 2018ReactomeTeamreactome version 62
93827view13:39, 16 August 2017ReactomeTeamreactome version 61
93377view11:21, 9 August 2017ReactomeTeamreactome version 61
86463view09:18, 11 July 2016ReactomeTeamreactome version 56
83275view10:37, 18 November 2015ReactomeTeamVersion54
81393view12:55, 21 August 2015ReactomeTeamVersion53
76861view08:13, 17 July 2014ReactomeTeamFixed remaining interactions
76566view11:55, 16 July 2014ReactomeTeamFixed remaining interactions
75899view09:55, 11 June 2014ReactomeTeamRe-fixing comment source
75599view10:44, 10 June 2014ReactomeTeamReactome 48 Update
74954view13:47, 8 May 2014AnweshaFixing comment source for displaying WikiPathways description
74598view08:38, 30 April 2014ReactomeTeamReactome46
71654view19:36, 17 October 2013MaintBotUpdated data sources
71187view15:46, 11 October 2013EgonwReplaced DataSource Uniprot with Uniprot/TrEMBL.
44882view10:09, 6 October 2011MartijnVanIerselOntology Term : 'transport pathway' added !
42003view21:30, 4 March 2011MaintBotAutomatic update
39868view05:53, 21 January 2011MaintBotNew pathway

External references


View all...
NameTypeDatabase referenceComment
ADPMetaboliteCHEBI:16761 (ChEBI)
ATPMetaboliteCHEBI:15422 (ChEBI)
CENP-E dimerComplexREACT_26478 (Reactome)
CENPE [cytosol]ProteinQ02224 (Uniprot-TrEMBL)
CENPEProteinQ02224 (Uniprot-TrEMBL)
CentralspindlinComplexREACT_25726 (Reactome)
Chromokinesin monomersProteinREACT_25504 (Reactome)
Chromokinesin dimersComplexREACT_26861 (Reactome)
KIF11 [cytosol]ProteinP52732 (Uniprot-TrEMBL)
KIF11ProteinP52732 (Uniprot-TrEMBL)
KIF15 [cytosol]ProteinQ9NS87 (Uniprot-TrEMBL)
KIF15 dimerComplexREACT_26477 (Reactome)
KIF15ProteinQ9NS87 (Uniprot-TrEMBL)
KIF18A [cytosol]ProteinQ8NI77 (Uniprot-TrEMBL)
KIF18A dimerComplexREACT_26936 (Reactome)
KIF18AProteinQ8NI77 (Uniprot-TrEMBL)
KIF22 [cytosol]ProteinQ14807 (Uniprot-TrEMBL)
KIF26A [cytosol]ProteinQ9ULI4 (Uniprot-TrEMBL) KIF26A is atypical as it lacks ATPase activity.
KIF2A [cytosol]ProteinO00139 (Uniprot-TrEMBL)
KIF2B [cytosol]ProteinQ8N4N8 (Uniprot-TrEMBL)
KIF2C [cytosol]ProteinQ99661 (Uniprot-TrEMBL)
KIF3A [cytosol]ProteinQ9Y496 (Uniprot-TrEMBL)
KIF3A partnersProteinREACT_25838 (Reactome)
KIF3AProteinQ9Y496 (Uniprot-TrEMBL)
KIF3B [cytosol]ProteinO15066 (Uniprot-TrEMBL)
KIF3C [cytosol]ProteinO14782 (Uniprot-TrEMBL)
KIF4A [cytosol]ProteinO95239 (Uniprot-TrEMBL)
KIF4B [cytosol]ProteinQ2VIQ3 (Uniprot-TrEMBL)
KIF9 [cytosol]ProteinQ9HAQ2 (Uniprot-TrEMBL)
KIF9 dimerComplexREACT_26592 (Reactome)
KIF9ProteinQ9HAQ2 (Uniprot-TrEMBL)
KIFAP3 [cytosol]ProteinQ92845 (Uniprot-TrEMBL)
KIFAP3ProteinQ92845 (Uniprot-TrEMBL)
KIFC1 [cytosol]ProteinQ9BW19 (Uniprot-TrEMBL)
KIFC1ProteinQ9BW19 (Uniprot-TrEMBL)
Kinesin-1 heavy chainProteinREACT_26554 (Reactome)
Kinesin-1 light chainsProteinREACT_26537 (Reactome)
Kinesin-13 dimersComplexREACT_25940 (Reactome)
Kinesin-13 monomersProteinREACT_26496 (Reactome)
Kinesin-14ComplexREACT_26798 (Reactome)
Kinesin-1ComplexREACT_26141 (Reactome)
Kinesin-2ComplexREACT_26940 (Reactome)
Kinesin-3 dimersComplexREACT_26306 (Reactome)
Kinesin-3 monomersProteinREACT_26661 (Reactome)
Kinesin-5 homotetramerComplexREACT_26711 (Reactome)
Kinesin-6ProteinREACT_26851 (Reactome)
Kinesins:microtubuleComplexREACT_26291 (Reactome)
KinesinsComplexREACT_26925 (Reactome)
RACGAP1 [cytosol]ProteinQ9H0H5 (Uniprot-TrEMBL)
RACGAP1ProteinQ9H0H5 (Uniprot-TrEMBL)
microtubuleREACT_10446 (Reactome)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
ADPArrowREACT_24947 (Reactome)
ATPREACT_24947 (Reactome)
CENP-E dimerArrowREACT_25390 (Reactome)
CENPEREACT_25390 (Reactome)
CentralspindlinArrowREACT_25259 (Reactome)
Chromokinesin monomersREACT_25110 (Reactome)
Chromokinesin dimersArrowREACT_25110 (Reactome)
KIF11REACT_25074 (Reactome)
KIF15 dimerArrowREACT_25172 (Reactome)
KIF15REACT_25172 (Reactome)
KIF18A dimerArrowREACT_25182 (Reactome)
KIF18AREACT_25182 (Reactome)
KIF3A partnersREACT_25360 (Reactome)
KIF3AREACT_25360 (Reactome)
KIF9 dimerArrowREACT_24934 (Reactome)
KIF9REACT_24934 (Reactome)
KIFAP3REACT_25360 (Reactome)
KIFC1REACT_25242 (Reactome)
Kinesin-1 heavy chainREACT_25083 (Reactome)
Kinesin-1 light chainsREACT_25083 (Reactome)
Kinesin-13 dimersArrowREACT_25381 (Reactome)
Kinesin-13 monomersREACT_25381 (Reactome)
Kinesin-14ArrowREACT_25242 (Reactome)
Kinesin-1ArrowREACT_25083 (Reactome)
Kinesin-2ArrowREACT_25360 (Reactome)
Kinesin-3 dimersArrowREACT_25043 (Reactome)
Kinesin-3 monomersREACT_25043 (Reactome)
Kinesin-5 homotetramerArrowREACT_25074 (Reactome)
Kinesin-6REACT_25259 (Reactome)
Kinesins:microtubuleArrowREACT_24947 (Reactome)
Kinesins:microtubuleArrowREACT_25309 (Reactome)
Kinesins:microtubuleREACT_24947 (Reactome)
KinesinsREACT_25309 (Reactome)
RACGAP1REACT_25259 (Reactome)
REACT_24934 (Reactome) KIF9 has the coiled-coil domain typical of the dimeric kinesins and is believed to function as a dimer.
REACT_24947 (Reactome) Kinesins consume ATP to power the motor which allows them to move along microtubules. The motor region contains highly conserved Switch 1 (SSRSH) and 2 (DLAGSE) motifs which change conformation during ATP hydrolysis (Rice et al. 1999). These form a salt-bridge that, in myosin, closes the nucleotide-binding cleft, enabling the motor to hydrolyze ATP (Geeves & Holmes 1999). This closed conformation has now been seen by cryo-electron microscopy in human conventional kinesin (Sindelar & Downing 2010) and in a crystal structure of the frog kinesin-5 Eg5 (Parke et al. 2010).
REACT_25043 (Reactome) Kinesin-3 drives the transport of synaptic vesicle precursors to axon terminals. Loss of the Caenorhabditis elegans protein Unc104, eqivalent to human KIF1A, results in decreased synaptic vesicles in axonal growth cones. In mice loss of KIF1A caused severe motor and sensory abnormalities associated with neuronal cell death (Yonekawa et al. 1998). Kinesin-3 is often described as monomeric, but has recently been shown to be functionally dimeric (Hammond et al. 2009).
REACT_25074 (Reactome) Kinesin-5 motors are bipolar homotetramers with two motor domains at each end, separated by a stalk/tail region (Cole et al. 1994). During mitosis, Kinesin-5 motors function near the spindle midzone to maintain pole to pole distance. Motor domains attach to microtubules from opposite poles and translocate towards the plus ends, thereby pushing the spindle poles apart (Kapitein et al. 2005). Kinesin-5 is also involved in axon growth (Myers & Baas 2007).
REACT_25083 (Reactome) Kinesin-1 is a heterotetramer of two heavy chains (HCs) and two light chains (LCs). The HC tail binds microtubules and inhibits ATPase activity by interacting with the enzymatic HC heads. LCs regulate the head and microtubule-binding activities of the HC tail by reducing the affinity of the head-tail interaction over tenfold. By a separate mechanism LCs inhibit microtubule binding.
REACT_25110 (Reactome) Chromokinesins consist of the kinesin-4 and kinesin-10 families.They act in various steps of mitosis, including chromosome condensation, metaphase alignment, chromosome segregation and cytokinesis (Mazumdar & Misteli 2005). Both families consist of homodimeric microtubule-based plus-end directed motor proteins (Sekine et al. 1994, Yajima et al. 2003).
REACT_25172 (Reactome) Kif15 (human kinesin-12) is by analogy with orthologous proteins believed to be a plus-end-directed motor. It cooperates with kinesin-5 to promote bipolar spindle assembly during cell division (Tanenbaum et al. 2009), with a mechanism that is distinct from that of kinesin-5 (Vanneste et al. 2009).
REACT_25182 (Reactome) Kinesin-8 is a plus-end-directed dimeric kinesin with an internal motor domain (Loughlin et al. 2008) that can depolymerize stable microtubuless specifically at their plus-ends (Pereira et al. 1997) in a length-dependent manner (Varga et al. 2006). Human kinesin-8 KIF18A is believed to promote chromosome congression by attenuating chromosome oscillation magnitudes (Stumpff et al. 2008).
REACT_25242 (Reactome) Kinesin-14 proteins have a C-terminal motor domain. At least four members of the group (Dm Ncd, Sc KAR3, Cg CHO2, At KCBP) have been demonstrated to be minus-end directed motors (Walker et al. 1990), in contrast to the usual plus-end directed motility of other kinesin proteins.

During spindle formation, Kinesin-14 cross-links antiparallel microtubules and slides them together (thereby generating inward forces) to balance the outward forces generated by plus-end-directed kinesins of the Kinesin-5 family. Kinesin-14 family members also gather microtubule minus-ends and focus them into spindle poles. Mutation or inhibition of Kinesin-14 family members often results in disordered or splayed meiotic spindle poles (Ambrose et al. 2005).
REACT_25259 (Reactome) Cytokinesis requires the central spindle, which forms during anaphase by the bundling of antiparallel nonkinetochore microtubules. Microtubule bundling and completion of cytokinesis require MKLP1, a kinesin-6 family member, and RACGAP1 (MgcRacGap), which contains a RhoGAP domain. These form a heterotetrameric complex known as centralspindlin. Centralspindlin, but not its individual components, strongly promotes microtubule bundling in vitro.
REACT_25309 (Reactome) All kinesins contain a motor domain or head, the position varies but it is structurally highly conserved (Kull et al. 1996, Sablin et al. 1996). The microtubule-binding site includes structural elements which interact with tubulin and undergo movement between the ADP and ATP bound states. The highly conserved switch I (SSRSH) and II (DLAGSE) motifs, which change in conformation during the ATP hydrolysis cycle, form a salt-bridge that, in myosin, closes the nucleotide-binding cleft, enabling the motor to hydrolyze ATP (Geeves & Holmes 1999). This closed conformation has now been seen in a crystal structure of the frog kinesin-5 Eg5 (Parke et al. 2010).
REACT_25360 (Reactome) Kinesin-2 is a heterotrimer with two different motor subunits and an accessory protein that is believed to interact with the cargo, or possibly regulate motor activity (Marszalek & Goldstein 2002). The motor domain interacts with microtubules and contains the ATPase used to translocate the holoenzyme along the microtubule. The coiled-coil stalk is where the two motor subunits interact with each other to form a stable heterodimer. The tail domains interact with the KAP3 non-motor accessory subunit. Kinesin-2 is a plus-end directed kinesin involved in photoreceptor cell function (Jimeno et al. 2006) and normal steady-state localization of late endosomes/lysosomes (Brown et al. 2005).
REACT_25381 (Reactome) Kinesin-13 proteins are homodimeric with the kinesin motor in the middle of the amino acid sequence. They induce microtubule depolymerization by disassembling tubulin subunits from the polymer end (Desai et al. 1999).
REACT_25390 (Reactome) Human kinesin-7, or CENP-E was one of the first kinesins to be discovered (Yen et al. 1991). It is essential for mammalian development, having a role in stabilizing kinetochore-microtubule capture (Putkey et al. 2002), CENP-E is an integral component of kinetochore corona fibers that link centromeres to spindle microtubules and localizes to kinetochores throughout all phases of mitotic chromosome movement (early premetaphase through anaphase A). Though originally reported to be minus-end-directed it is now believed to be a plus-end-directed dimeric kinesin (Espeut et al. 2008). It is sequestered in the cytoplasm until nuclear envelope breakdown and then localizes to its chromosomal cargo at the kinetochores (Brown et al. 1996).
microtubuleREACT_25309 (Reactome)
Personal tools