Degradation of the extracellular matrix (Homo sapiens)

From WikiPathways

Jump to: navigation, search
25572017439, 403922, 365615, 31, 3842191926, 48, 52, 59514934, 453, 10321912, 5414, 16, 17, 29, 305, 24131, 2, 7, 21, 23...11535437, 543355, 586, 58cytosolCa2+ OPTC(20-114)Elastin-degradingextracellularproteinasesMMP2, MMP3, MMP7KS(2),CSE-ACAN(361-2415) BSGMMP2,9,12,13Fibrillin 1,2,(3)MMP20 MMP9, KLK7C6S-BCAN(23-360) ADAM10 MMP14, MMP15Fibrillin-1 SCUBE3 polymer MMP10 D4S-BCAN(23-360) KS(2),CSE-ACAN(17-392) KS(2),CSE-ACAN(393-2415) ELANE CASP3(29-175) MMP9 ADAM10, ADAM15Ca2+ MMP1(100-469) CDH1(155-882) C6S-BCAN(23-395) ADAMTS5 SPP1Ca2+ MMP7 MMP2(110-660) Cleaved fibrillin-3 MMP2, MMP9MMP3(100-477) MMP3(100-477) CSE-BCAN CDH1(751-882) NID1(?-1247)BSG ADAMTS4 MMP19 MMP9 Ca2+ MMP2(110-660) ELANE CTSL(292-333) CASP3(176-277) MMP13 Laminin-332CSE-BCAN(23-360) MMP3(100-477) ADAMTS16 CDH1(701-882) SCUBE1,SCUBE3ADAMTS4 SCUBE1,SCUBE3 polymer CDH1(155-750) KS(2),C4S-ACAN(393-2415) CAPN3 KLK7 KS(2),C6S-ACAN(17-360) KS(2),C4S-ACAN(17-392) MMP10 E-cadherin stranddimer fragment732-882DCN(31-?)MMP7 Activation of MatrixMetalloproteinasesKS(2),C6S-ACAN CAPNS1 D2,4(S)2-BCAN(361-911) KS(2),C4S-ACAN(17-360) MMP13 Aggrecan(361-2415)MMP1(100-469) Cleaved laminin-332ADAMTS4, 5, (1, 8,9, 16, 18)MMP7 MMP3(100-477) PLG(20-580) SCUBE3CAPNS2 MMP15 CTSS DCNLAMA5(?-3695) BMP1 SPP1(?-314)CD44 C4S-BCAN(23-360) MMP13 MMP2(110-660) LAMC2(?-1193) CAPN2 HSPG2(22-?)CDH1(732-882) Cleaved fibrillin1,2,(3)MMP12 MMP3(100-477) CASTPlasmin, BMP1 H2OCAPN5 D2,4(S)2-BCAN(396-911) MMP7 CAPN14 HSPG2(22-4196)MMP7 BMP1, TLL1, TLL2,Cathepsin L1KS(2),CSE-ACAN(17-375) MMP9 Cleaved fibrillin-1 MMP7 Aggrecan(393-2415)MMP14,TMPRSS6Ca2+DCN(?-359)MMP1(100-469) MMP7 LAMA3(?-3333) MMP8 C6S-BCAN(396-911) calpain-cleavedproteinOPTCE-cadherin stranddimer fragment155-700MMP9 E-cadherin stranddimer fragment155-750MMP7 D2,4(S)2-BCAN(23-360) ADAM8SPP1(17-?)LAMB3(?-1172) LAMA5 C4S-BCAN(361-911) OPTC(20-32)CAPN10 PSEN1(299-467) CSE-BCAN(361-911) MMP7 MMP7 MMP1(100-469) SCUBE1 A2M MMP1, 3, 13, (2,7-12, 19)D2,4,4(S)3-BCAN(361-911) MMP2(110-660) MMP1,2,3,7,9,12,13ELANED2,4,4(S)3-BCAN CD44MMP12 KS(2),CSE-ACAN(376-2415) ADAM15 KS(2),CSE-ACAN(17-360) ACAN(17-375)Alpha2-macroglobulin:MMP1, 3, 13, (2, 7-12, 19)LAMA3 LAMC1 MMP9 MMP10 MMP10 MMP13 CTSL2 MMP1, MMP9, MMP12,ELANEMMP3, CTSK, CTSL2HSPG2(?-4391)KS(2),C4S-ACAN(17-375) HSPG2(4197-4391)D4S-BCAN(396-911) substrate proteinfor calpainsBrevican(396-911)CTSL(114-288) MMP12 KS(2),C6S-ACAN(17-392) MMP3, MMP7, PlasminA2M MMP11 C4S-BCAN(396-911) Laminin-511 (cleavedalpha chain)MMP1(100-469)HSPG2(22-4391)D4S-BCAN(23-395) MMP20 MMP13, CTSSCleaved fibronectinmatrixD4S-BCAN A2M tetramerCAPN8 CAPN7 MMP13 PLG(581-810) CAPN9 CAPN12 C4S-BCAN ElastinACAN(376-2415)TLL1 SCUBE3(?-993)Ca2+ MMP2(110-660) MMP3(100-477) Ca2+ MMP2, MMP7, MMP9C6S-BCAN Laminin gamma-2 degrading extracellular proteinases TLL2 MMP12 MMP19CAPN6 CSE-BCAN(23-395) LAMB1 HTRA1 trimerMMP2(110-660) MMP1(100-469) PLG(581-810) KS(2),C6S-ACAN(376-2415) MMP14 MMP13 CAPNS1 MMP2(110-660) Fibronectin matrixMMP8 Ca2+ SCUBE1,SCUBE3polymer, SCUBE3polymerKS(2),C4S-ACAN MMP2(110-660) CAPN1 MMP19 KS(2),CSE-ACAN CDH1(155-882):Ca2+dimerOPTC(20-87)KS(2),C6S-ACAN(393-2415) MMP13MMP3(100-477) Ca2+ OPTC(88-114)KS(2),C4S-ACAN(361-2415) ADAMTS8 KS(2),C6S-ACAN(17-375) D4S-BCAN(361-911) MMP14 LAMB3 MMP12 NID1MMP19 Collagen degradationFibrillin-2 MMP3(100-477) LAMB3(18-?) Aggrecan(17-360)MMP9 OPTC(33-87)NID1(29-?)Fibrillin-3 CSE-BCAN(396-911) CAPN11 Cleaved elastinMMP1, 3, 7, 12, 13,19, CTSSMMP9 BrevicanMMP7 CAPN15 PLG(20-580) ADAMTS9 D2,4,4(S)3-BCAN(396-911) CAPN13 MMP10CAPN1 MMP3, MMP7LAMA3(36-?) MMP11 E-cadherin stranddimer fragment701-882Aggrecan(17-392)TMPRSS6 MMP1(100-469) MMP12 MMP13 ADAMTS4, ADAMTS5CAPN:4xCa2+:CAPNSMMP12 HTRA1 MMP7 Active caspase-3heterotetramer,calpain-1MMP9 LAMA5(36-?) D2,4(S)2-BCAN(23-395) CTSK ADAMTS5 MMP2(110-660) LAMC2 MMP7MMP12 MMP3(100-477) E-cadherin stranddimer fragment751-882ADAMTS18 D2,4(S)2-BCAN C6S-BCAN(361-911) PSEN1(1-298) Laminin-332degradingextracellularproteinasesMMP9 NCSTN MMP3, plasmin,(MMP12)Cleaved fibrillin-1MMP3(100-477) C4S-BCAN(23-395) SCUBE3 Brevican(23-360)Cleaved fibronectinmatrixAla(271)/Val(272)D2,4,4(S)3-BCAN(23-395) MMP1, 2, 3,7,8,10,13,19D2,4,4(S)3-BCAN(23-360) OPTC(115-332)CDH1(155-700) Laminin-511MMP9 LAMB1 MMP3(100-477) MMP2(110-660) LAMC2(22-?) CTSS BSG:MMP1(100-469)PS1:NCSTNBrevican(23-395)MMP19 Brevican(361-911)Cleaved fibrillin-2 SCUBE3(21-?)CD44:MMP2, MMP7,MMP9MMP8 LAMC1 Fibrillin-1MMP1(100-469) ADAMTS1 KS(2),C4S-ACAN(376-2415) CTSGAggrecanKS(2),C6S-ACAN(361-2415) MMP2(110-660)288, 18, 27, 4441414, 35, 504726


Description

Matrix metalloproteinases (MMPs), previously referred to as matrixins because of their role in degradation of the extracellular matrix (ECM), are zinc and calcium dependent proteases belonging to the metzincin family. They contain a characteristic zinc-binding motif HEXXHXXGXXH (Stocker & Bode 1995) and a conserved Methionine which forms a Met-turn. Humans have 24 MMP genes giving rise to 23 MMP proteins, as MMP23 is encoded by two identical genes. All MMPs contain an N-terminal secretory signal peptide and a prodomain with a conserved PRCGXPD motif that in the inactive enzyme is localized with the catalytic site, the cysteine acting as a fourth unpaired ligand for the catalytic zinc atom. Activation involves delocalization of the domain containing this cysteine by a conformational change or proteolytic cleavage, a mechanism referred to as the cysteine-switch (Van Wart & Birkedal-Hansen 1990). Most MMPs are secreted but the membrane type MT-MMPs are membrane anchored and some MMPs may act on intracellular proteins. Various domains determine substrate specificity, cell localization and activation (Hadler-Olsen et al. 2011). MMPs are regulated by transcription, cellular location (most are not activated until secreted), activating proteinases that can be other MMPs, and by metalloproteinase inhibitors such as the tissue inhibitors of metalloproteinases (TIMPs). MMPs are best known for their role in the degradation and removal of ECM molecules. In addition, cleavage of the ECM and other cell surface molecules can release ECM-bound growth factors, and a number of non-ECM proteins are substrates of MMPs (Nagase et al. 2006). MMPs can be divided into subgroups based on domain structure and substrate specificity but it is clear that these are somewhat artificial, many MMPs belong to more than one functional group (Vise & Nagase 2003, Somerville et al. 2003). View original pathway at:Reactome.

Comments

Reactome-Converter 
Pathway is converted from Reactome ID: 1474228
Reactome-version 
Reactome version: 66
Reactome Author 
Reactome Author: Jupe, Steve

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Campbell RL, Davies PL.; ''Structure-function relationships in calpains.''; PubMed Europe PMC
  2. Sorimachi H, Hata S, Ono Y.; ''Expanding members and roles of the calpain superfamily and their genetically modified animals.''; PubMed Europe PMC
  3. Johnson SK, Ramani VC, Hennings L, Haun RS.; ''Kallikrein 7 enhances pancreatic cancer cell invasion by shedding E-cadherin.''; PubMed Europe PMC
  4. Steinhusen U, Weiske J, Badock V, Tauber R, Bommert K, Huber O.; ''Cleavage and shedding of E-cadherin after induction of apoptosis.''; PubMed Europe PMC
  5. Shi F, Sottile J.; ''MT1-MMP regulates the turnover and endocytosis of extracellular matrix fibronectin.''; PubMed Europe PMC
  6. Nakada M, Miyamori H, Kita D, Takahashi T, Yamashita J, Sato H, Miura R, Yamaguchi Y, Okada Y.; ''Human glioblastomas overexpress ADAMTS-5 that degrades brevican.''; PubMed Europe PMC
  7. Ono Y, Sorimachi H.; ''Calpains: an elaborate proteolytic system.''; PubMed Europe PMC
  8. Rodríguez D, Morrison CJ, Overall CM.; ''Matrix metalloproteinases: what do they not do? New substrates and biological roles identified by murine models and proteomics.''; PubMed Europe PMC
  9. Cailhier JF, Sirois I, Laplante P, Lepage S, Raymond MA, Brassard N, Prat A, Iozzo RV, Pshezhetsky AV, Hébert MJ.; ''Caspase-3 activation triggers extracellular cathepsin L release and endorepellin proteolysis.''; PubMed Europe PMC
  10. Symowicz J, Adley BP, Gleason KJ, Johnson JJ, Ghosh S, Fishman DA, Hudson LG, Stack MS.; ''Engagement of collagen-binding integrins promotes matrix metalloproteinase-9-dependent E-cadherin ectodomain shedding in ovarian carcinoma cells.''; PubMed Europe PMC
  11. Mimura T, Han KY, Onguchi T, Chang JH, Kim TI, Kojima T, Zhou Z, Azar DT.; ''MT1-MMP-mediated cleavage of decorin in corneal angiogenesis.''; PubMed Europe PMC
  12. Kirschner R, Hubmacher D, Iyengar G, Kaur J, Fagotto-Kaufmann C, Brömme D, Bartels R, Reinhardt DP.; ''Classical and neonatal Marfan syndrome mutations in fibrillin-1 cause differential protease susceptibilities and protein function.''; PubMed Europe PMC
  13. Wu BT, Su YH, Tsai MT, Wasserman SM, Topper JN, Yang RB.; ''A novel secreted, cell-surface glycoprotein containing multiple epidermal growth factor-like repeats and one CUB domain is highly expressed in primary osteoblasts and bones.''; PubMed Europe PMC
  14. Knäuper V, Cowell S, Smith B, López-Otin C, O'Shea M, Morris H, Zardi L, Murphy G.; ''The role of the C-terminal domain of human collagenase-3 (MMP-13) in the activation of procollagenase-3, substrate specificity, and tissue inhibitor of metalloproteinase interaction.''; PubMed Europe PMC
  15. Ahmed N, Pansino F, Clyde R, Murthi P, Quinn MA, Rice GE, Agrez MV, Mok S, Baker MS.; ''Overexpression of alpha(v)beta6 integrin in serous epithelial ovarian cancer regulates extracellular matrix degradation via the plasminogen activation cascade.''; PubMed Europe PMC
  16. Fukai F, Ohtaki M, Fujii N, Yajima H, Ishii T, Nishizawa Y, Miyazaki K, Katayama T.; ''Release of biological activities from quiescent fibronectin by a conformational change and limited proteolysis by matrix metalloproteinases.''; PubMed Europe PMC
  17. Stracke JO, Hutton M, Stewart M, Pendás AM, Smith B, López-Otin C, Murphy G, Knäuper V.; ''Biochemical characterization of the catalytic domain of human matrix metalloproteinase 19. Evidence for a role as a potent basement membrane degrading enzyme.''; PubMed Europe PMC
  18. Morrison CJ, Butler GS, Rodríguez D, Overall CM.; ''Matrix metalloproteinase proteomics: substrates, targets, and therapy.''; PubMed Europe PMC
  19. Tío L, Martel-Pelletier J, Pelletier JP, Bishop PN, Roughley P, Farran A, Benito P, Monfort J.; ''Characterization of opticin digestion by proteases involved in osteoarthritis development.''; PubMed Europe PMC
  20. Zack MD, Malfait AM, Skepner AP, Yates MP, Griggs DW, Hall T, Hills RL, Alston JT, Nemirovskiy OV, Radabaugh MR, Leone JW, Arner EC, Tortorella MD.; ''ADAM-8 isolated from human osteoarthritic chondrocytes cleaves fibronectin at Ala(271).''; PubMed Europe PMC
  21. Croall DE, Ersfeld K.; ''The calpains: modular designs and functional diversity.''; PubMed Europe PMC
  22. Murphy G, Cockett MI, Ward RV, Docherty AJ.; ''Matrix metalloproteinase degradation of elastin, type IV collagen and proteoglycan. A quantitative comparison of the activities of 95 kDa and 72 kDa gelatinases, stromelysins-1 and -2 and punctuated metalloproteinase (PUMP).''; PubMed Europe PMC
  23. Goll DE, Thompson VF, Li H, Wei W, Cong J.; ''The calpain system.''; PubMed Europe PMC
  24. Velasco G, Cal S, Quesada V, Sánchez LM, López-Otín C.; ''Matriptase-2, a membrane-bound mosaic serine proteinase predominantly expressed in human liver and showing degrading activity against extracellular matrix proteins.''; PubMed Europe PMC
  25. Lu P, Takai K, Weaver VM, Werb Z.; ''Extracellular matrix degradation and remodeling in development and disease.''; PubMed Europe PMC
  26. Truebestein L, Tennstaedt A, Mönig T, Krojer T, Canellas F, Kaiser M, Clausen T, Ehrmann M.; ''Substrate-induced remodeling of the active site regulates human HTRA1 activity.''; PubMed Europe PMC
  27. Cauwe B, Van den Steen PE, Opdenakker G.; ''The biochemical, biological, and pathological kaleidoscope of cell surface substrates processed by matrix metalloproteinases.''; PubMed Europe PMC
  28. Li T, Ma G, Cai H, Price DL, Wong PC.; ''Nicastrin is required for assembly of presenilin/gamma-secretase complexes to mediate Notch signaling and for processing and trafficking of beta-amyloid precursor protein in mammals.''; PubMed Europe PMC
  29. Gronski TJ, Martin RL, Kobayashi DK, Walsh BC, Holman MC, Huber M, Van Wart HE, Shapiro SD.; ''Hydrolysis of a broad spectrum of extracellular matrix proteins by human macrophage elastase.''; PubMed Europe PMC
  30. Taleb S, Cancello R, Clément K, Lacasa D.; ''Cathepsin s promotes human preadipocyte differentiation: possible involvement of fibronectin degradation.''; PubMed Europe PMC
  31. Toole BP.; ''Hyaluronan and its binding proteins, the hyaladherins.''; PubMed Europe PMC
  32. Agnihotri R, Crawford HC, Haro H, Matrisian LM, Havrda MC, Liaw L.; ''Osteopontin, a novel substrate for matrix metalloproteinase-3 (stromelysin-1) and matrix metalloproteinase-7 (matrilysin).''; PubMed Europe PMC
  33. Strickland DK, Ashcom JD, Williams S, Burgess WH, Migliorini M, Argraves WS.; ''Sequence identity between the alpha 2-macroglobulin receptor and low density lipoprotein receptor-related protein suggests that this molecule is a multifunctional receptor.''; PubMed Europe PMC
  34. Najy AJ, Day KC, Day ML.; ''The ectodomain shedding of E-cadherin by ADAM15 supports ErbB receptor activation.''; PubMed Europe PMC
  35. Shapiro SD.; ''Matrix metalloproteinase degradation of extracellular matrix: biological consequences.''; PubMed Europe PMC
  36. Shapiro SD, Kobayashi DK, Ley TJ.; ''Cloning and characterization of a unique elastolytic metalloproteinase produced by human alveolar macrophages.''; PubMed Europe PMC
  37. Hindson VJ, Ashworth JL, Rock MJ, Cunliffe S, Shuttleworth CA, Kielty CM.; ''Fibrillin degradation by matrix metalloproteinases: identification of amino- and carboxy-terminal cleavage sites.''; PubMed Europe PMC
  38. Samanna V, Wei H, Ego-Osuala D, Chellaiah MA.; ''Alpha-V-dependent outside-in signaling is required for the regulation of CD44 surface expression, MMP-2 secretion, and cell migration by osteopontin in human melanoma cells.''; PubMed Europe PMC
  39. Vartio T.; ''Characterization of the binding domains in the fragments cleaved by cathepsin G from human plasma fibronectin.''; PubMed Europe PMC
  40. Gonzalez EM, Reed CC, Bix G, Fu J, Zhang Y, Gopalakrishnan B, Greenspan DS, Iozzo RV.; ''BMP-1/Tolloid-like metalloproteases process endorepellin, the angiostatic C-terminal fragment of perlecan.''; PubMed Europe PMC
  41. Shi Y.; ''Mechanisms of caspase activation and inhibition during apoptosis.''; PubMed Europe PMC
  42. Whitelock JM, Murdoch AD, Iozzo RV, Underwood PA.; ''The degradation of human endothelial cell-derived perlecan and release of bound basic fibroblast growth factor by stromelysin, collagenase, plasmin, and heparanases.''; PubMed Europe PMC
  43. Udayakumar TS, Chen ML, Bair EL, Von Bredow DC, Cress AE, Nagle RB, Bowden GT.; ''Membrane type-1-matrix metalloproteinase expressed by prostate carcinoma cells cleaves human laminin-5 beta3 chain and induces cell migration.''; PubMed Europe PMC
  44. Butler GS, Overall CM.; ''Updated biological roles for matrix metalloproteinases and new "intracellular" substrates revealed by degradomics.''; PubMed Europe PMC
  45. Maretzky T, Reiss K, Ludwig A, Buchholz J, Scholz F, Proksch E, de Strooper B, Hartmann D, Saftig P.; ''ADAM10 mediates E-cadherin shedding and regulates epithelial cell-cell adhesion, migration, and beta-catenin translocation.''; PubMed Europe PMC
  46. Sorimachi H, Hata S, Ono Y.; ''Calpain chronicle--an enzyme family under multidisciplinary characterization.''; PubMed Europe PMC
  47. Campbell EJ, Silverman EK, Campbell MA.; ''Elastase and cathepsin G of human monocytes. Quantification of cellular content, release in response to stimuli, and heterogeneity in elastase-mediated proteolytic activity.''; PubMed Europe PMC
  48. Hu SI, Carozza M, Klein M, Nantermet P, Luk D, Crowl RM.; ''Human HtrA, an evolutionarily conserved serine protease identified as a differentially expressed gene product in osteoarthritic cartilage.''; PubMed Europe PMC
  49. Wu YY, Peck K, Chang YL, Pan SH, Cheng YF, Lin JC, Yang RB, Hong TM, Yang PC.; ''SCUBE3 is an endogenous TGF-β receptor ligand and regulates the epithelial-mesenchymal transition in lung cancer.''; PubMed Europe PMC
  50. Hadler-Olsen E, Fadnes B, Sylte I, Uhlin-Hansen L, Winberg JO.; ''Regulation of matrix metalloproteinase activity in health and disease.''; PubMed Europe PMC
  51. d'Ortho MP, Will H, Atkinson S, Butler G, Messent A, Gavrilovic J, Smith B, Timpl R, Zardi L, Murphy G.; ''Membrane-type matrix metalloproteinases 1 and 2 exhibit broad-spectrum proteolytic capacities comparable to many matrix metalloproteinases.''; PubMed Europe PMC
  52. Chamberland A, Wang E, Jones AR, Collins-Racie LA, LaVallie ER, Huang Y, Liu L, Morris EA, Flannery CR, Yang Z.; ''Identification of a novel HtrA1-susceptible cleavage site in human aggrecan: evidence for the involvement of HtrA1 in aggrecan proteolysis in vivo.''; PubMed Europe PMC
  53. Guo H, Li R, Zucker S, Toole BP.; ''EMMPRIN (CD147), an inducer of matrix metalloproteinase synthesis, also binds interstitial collagenase to the tumor cell surface.''; PubMed Europe PMC
  54. Ashworth JL, Murphy G, Rock MJ, Sherratt MJ, Shapiro SD, Shuttleworth CA, Kielty CM.; ''Fibrillin degradation by matrix metalloproteinases: implications for connective tissue remodelling.''; PubMed Europe PMC
  55. Lettau I, Hattermann K, Held-Feindt J, Brauer R, Sedlacek R, Mentlein R.; ''Matrix metalloproteinase-19 is highly expressed in astroglial tumors and promotes invasion of glioma cells.''; PubMed Europe PMC
  56. Xiong W, Knispel R, MacTaggart J, Greiner TC, Weiss SJ, Baxter BT.; ''Membrane-type 1 matrix metalloproteinase regulates macrophage-dependent elastolytic activity and aneurysm formation in vivo.''; PubMed Europe PMC
  57. Imai K, Hiramatsu A, Fukushima D, Pierschbacher MD, Okada Y.; ''Degradation of decorin by matrix metalloproteinases: identification of the cleavage sites, kinetic analyses and transforming growth factor-beta1 release.''; PubMed Europe PMC
  58. Nakamura H, Fujii Y, Inoki I, Sugimoto K, Tanzawa K, Matsuki H, Miura R, Yamaguchi Y, Okada Y.; ''Brevican is degraded by matrix metalloproteinases and aggrecanase-1 (ADAMTS4) at different sites.''; PubMed Europe PMC
  59. Oka C, Tsujimoto R, Kajikawa M, Koshiba-Takeuchi K, Ina J, Yano M, Tsuchiya A, Ueta Y, Soma A, Kanda H, Matsumoto M, Kawaichi M.; ''HtrA1 serine protease inhibits signaling mediated by Tgfbeta family proteins.''; PubMed Europe PMC

History

View all...
CompareRevisionActionTimeUserComment
101468view11:33, 1 November 2018ReactomeTeamreactome version 66
101006view21:12, 31 October 2018ReactomeTeamreactome version 65
100542view19:46, 31 October 2018ReactomeTeamreactome version 64
100090view16:31, 31 October 2018ReactomeTeamreactome version 63
99640view15:02, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
99243view12:44, 31 October 2018ReactomeTeamreactome version 62
93614view11:28, 9 August 2017ReactomeTeamreactome version 61
86722view09:24, 11 July 2016ReactomeTeamreactome version 56
83208view10:22, 18 November 2015ReactomeTeamVersion54
81594view13:08, 21 August 2015ReactomeTeamVersion53
77052view08:35, 17 July 2014ReactomeTeamFixed remaining interactions
76757view12:11, 16 July 2014ReactomeTeamFixed remaining interactions
76082view10:14, 11 June 2014ReactomeTeamRe-fixing comment source
75792view11:32, 10 June 2014ReactomeTeamReactome 48 Update
75142view14:09, 8 May 2014AnweshaFixing comment source for displaying WikiPathways description
74789view08:52, 30 April 2014ReactomeTeamNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
A2M ProteinP01023 (Uniprot-TrEMBL)
A2M tetramerComplexR-HSA-158255 (Reactome)
ACAN(17-375)ComplexR-HSA-8855843 (Reactome)
ACAN(376-2415)ComplexR-HSA-8855819 (Reactome)
ADAM10 ProteinO14672 (Uniprot-TrEMBL)
ADAM10, ADAM15ComplexR-HSA-4224013 (Reactome)
ADAM15 ProteinQ13444 (Uniprot-TrEMBL)
ADAM8ProteinP78325 (Uniprot-TrEMBL)
ADAMTS1 ProteinQ9UHI8 (Uniprot-TrEMBL)
ADAMTS16 ProteinQ8TE57 (Uniprot-TrEMBL)
ADAMTS18 ProteinQ8TE60 (Uniprot-TrEMBL)
ADAMTS4 ProteinO75173 (Uniprot-TrEMBL)
ADAMTS4, 5, (1, 8, 9, 16, 18)ComplexR-HSA-3791133 (Reactome)
ADAMTS4, ADAMTS5ComplexR-HSA-3828053 (Reactome)
ADAMTS5 ProteinQ9UNA0 (Uniprot-TrEMBL)
ADAMTS8 ProteinQ9UP79 (Uniprot-TrEMBL)
ADAMTS9 ProteinQ9P2N4 (Uniprot-TrEMBL)
Activation of Matrix MetalloproteinasesPathwayR-HSA-1592389 (Reactome) The matrix metalloproteinases (MMPs), previously known as matrixins, are classically known to be involved in the turnover of extracellular matrix (ECM) components. However, recent high throughput proteomics analyses have revealed that ~80% of MMP substrates are non-ECM proteins including cytokines, growth factor binding protiens, and receptors. It is now clear that MMPs regulate ECM turnover not only by cleaving ECM components, but also by the regulation of cell signalling, and that some MMPs are beneficial and may be drug anti-targets. Thus, MMPs have important roles in many processes including embryo development, morphogenesis, tissue homeostasis and remodeling. They are implicated in several diseases such as arthritis, periodontitis, glomerulonephritis, atherosclerosis, tissue ulceration, and cancer cell invasion and metastasis. All MMPs are synthesized as preproenzymes. Alternate splice forms are known, leading to nuclear localization of select MMPs. Most are secreted from the cell, or in the case of membrane type (MT) MMPs become plasma membrane associated, as inactive proenzymes. Their subsequent activation is a key regulatory step, with requirements specific to MMP subtype.
Active caspase-3

heterotetramer,

calpain-1
ComplexR-HSA-3828019 (Reactome)
Aggrecan(17-360)ComplexR-HSA-3814822 (Reactome)
Aggrecan(17-392)ComplexR-HSA-3791320 (Reactome)
Aggrecan(361-2415)ComplexR-HSA-3814815 (Reactome)
Aggrecan(393-2415)ComplexR-HSA-3791316 (Reactome)
AggrecanComplexR-HSA-2318622 (Reactome)
Alpha 2-macroglobulin:MMP1, 3, 13, (2, 7-12, 19)ComplexR-HSA-2559501 (Reactome)
BMP1 ProteinP13497 (Uniprot-TrEMBL)
BMP1, TLL1, TLL2, Cathepsin L1ComplexR-HSA-3828023 (Reactome)
BSG ProteinP35613 (Uniprot-TrEMBL)
BSG:MMP1(100-469)ComplexR-HSA-375089 (Reactome)
BSGProteinP35613 (Uniprot-TrEMBL)
Brevican(23-360)ComplexR-HSA-3791183 (Reactome)
Brevican(23-395)ComplexR-HSA-3791124 (Reactome)
Brevican(361-911)ComplexR-HSA-3791187 (Reactome)
Brevican(396-911)ComplexR-HSA-3791150 (Reactome)
BrevicanComplexR-HSA-2681671 (Reactome)
C4S-BCAN ProteinQ96GW7 (Uniprot-TrEMBL)
C4S-BCAN(23-360) ProteinQ96GW7 (Uniprot-TrEMBL)
C4S-BCAN(23-395) ProteinQ96GW7 (Uniprot-TrEMBL)
C4S-BCAN(361-911) ProteinQ96GW7 (Uniprot-TrEMBL)
C4S-BCAN(396-911) ProteinQ96GW7 (Uniprot-TrEMBL)
C6S-BCAN ProteinQ96GW7 (Uniprot-TrEMBL)
C6S-BCAN(23-360) ProteinQ96GW7 (Uniprot-TrEMBL)
C6S-BCAN(23-395) ProteinQ96GW7 (Uniprot-TrEMBL)
C6S-BCAN(361-911) ProteinQ96GW7 (Uniprot-TrEMBL)
C6S-BCAN(396-911) ProteinQ96GW7 (Uniprot-TrEMBL)
CAPN1 ProteinP07384 (Uniprot-TrEMBL)
CAPN10 ProteinQ9HC96 (Uniprot-TrEMBL)
CAPN11 ProteinQ9UMQ6 (Uniprot-TrEMBL)
CAPN12 ProteinQ6ZSI9 (Uniprot-TrEMBL)
CAPN13 ProteinQ6MZZ7 (Uniprot-TrEMBL)
CAPN14 ProteinA8MX76 (Uniprot-TrEMBL)
CAPN15 ProteinO75808 (Uniprot-TrEMBL)
CAPN2 ProteinP17655 (Uniprot-TrEMBL)
CAPN3 ProteinP20807 (Uniprot-TrEMBL)
CAPN5 ProteinO15484 (Uniprot-TrEMBL)
CAPN6 ProteinQ9Y6Q1 (Uniprot-TrEMBL)
CAPN7 ProteinQ9Y6W3 (Uniprot-TrEMBL)
CAPN8 ProteinA6NHC0 (Uniprot-TrEMBL)
CAPN9 ProteinO14815 (Uniprot-TrEMBL)
CAPN:4xCa2+:CAPNSComplexR-HSA-8848666 (Reactome)
CAPNS1 ProteinP04632 (Uniprot-TrEMBL)
CAPNS2 ProteinQ96L46 (Uniprot-TrEMBL)
CASP3(176-277) ProteinP42574 (Uniprot-TrEMBL)
CASP3(29-175) ProteinP42574 (Uniprot-TrEMBL)
CASTProteinP20810 (Uniprot-TrEMBL)
CD44 ProteinP16070 (Uniprot-TrEMBL)
CD44:MMP2, MMP7, MMP9ComplexR-HSA-2559499 (Reactome)
CD44ProteinP16070 (Uniprot-TrEMBL)
CDH1(155-700) ProteinP12830 (Uniprot-TrEMBL)
CDH1(155-750) ProteinP12830 (Uniprot-TrEMBL)
CDH1(155-882) ProteinP12830 (Uniprot-TrEMBL)
CDH1(155-882):Ca2+ dimerComplexR-HSA-2534182 (Reactome)
CDH1(701-882) ProteinP12830 (Uniprot-TrEMBL)
CDH1(732-882) ProteinP12830 (Uniprot-TrEMBL)
CDH1(751-882) ProteinP12830 (Uniprot-TrEMBL)
CSE-BCAN ProteinQ96GW7 (Uniprot-TrEMBL)
CSE-BCAN(23-360) ProteinQ96GW7 (Uniprot-TrEMBL)
CSE-BCAN(23-395) ProteinQ96GW7 (Uniprot-TrEMBL)
CSE-BCAN(361-911) ProteinQ96GW7 (Uniprot-TrEMBL)
CSE-BCAN(396-911) ProteinQ96GW7 (Uniprot-TrEMBL)
CTSGProteinP08311 (Uniprot-TrEMBL) After secretion Cathepsin G is extracellular and associated with the plasma membrane.
CTSK ProteinP43235 (Uniprot-TrEMBL)
CTSL(114-288) ProteinP07711 (Uniprot-TrEMBL)
CTSL(292-333) ProteinP07711 (Uniprot-TrEMBL)
CTSL2 ProteinO60911 (Uniprot-TrEMBL)
CTSS ProteinP25774 (Uniprot-TrEMBL)
Ca2+ MetaboliteCHEBI:29108 (ChEBI)
Ca2+MetaboliteCHEBI:29108 (ChEBI)
Cleaved elastinR-HSA-2514799 (Reactome)
Cleaved fibrillin 1,2,(3)ComplexR-HSA-2514788 (Reactome)
Cleaved fibrillin-1 R-HSA-2514812 (Reactome)
Cleaved fibrillin-1R-HSA-2514812 (Reactome)
Cleaved fibrillin-2 R-HSA-2514779 (Reactome)
Cleaved fibrillin-3 R-HSA-2514789 (Reactome)
Cleaved fibronectin

matrix

Ala(271)/Val(272)
R-HSA-3787944 (Reactome)
Cleaved fibronectin matrixR-HSA-2533900 (Reactome)
Cleaved laminin-332ComplexR-HSA-2533911 (Reactome)
Collagen degradationPathwayR-HSA-1442490 (Reactome) Collagen fibril diameter and spatial organisation are dependent on the species, tissue type and stage of development (Parry 1988). The lengths of collagen fibrils in mature tissues are largely unknown but in tendon can be measured in millimetres (Craig et al. 1989). Collagen fibrils isolated from adult bovine corneal stroma had ~350 collagen molecules in transverse section, tapering down to three molecules at the growing tip (Holmes & Kadler 2005).

The classical view of collagenases is that they actively unwind the triple helical chain, a process termed molecular tectonics (Overall 2002, Bode & Maskos 2003), before preferentially cleaving the alpha2 chain followed by the remaining chains (Chung et al. 2004). More recently it has been suggested that collagen fibrils exist in an equilibrium between protected and vulnerable states (Stultz 2002, Nerenberg & Stultz 2008). The prototypical triple-helical structure of collagen does not fit into the active site of collagenase MMPs. In addition the scissile bonds are not solvent-exposed and are therefore inaccessible to the collagenase active site (Chung et al. 2004, Stultz 2002). It was realized that collagen must locally unfold into non-triple helical regions to allow collagenolysis. Observations using circular dichroism and differential scanning calorimetry confirm that there is considerable heterogeneity along collagen fibres (Makareeva et al. 2008) allowing access for MMPs at physiological temperatures (Salsas-Escat et al. 2010).

Collagen fibrils with cut chains are unstable and accessible to proteinases that cannot cleave intact collagen strands (Woessner & Nagase 2000, Somerville et al. 2003). Continued degradation leads to the formation of gelatin (Lovejoy et al. 1999). Degradation of collagen types other than I-III is less well characterized but believed to occur in a similar manner.

Metalloproteinases (MMPs) play a major part in the degradation of several extracellular macromolecules including collagens. MMP1 (Welgus et al. 1981), MMP8 (Hasty et al. 1987), and MMP13 (Knauper et al. 1996), sometimes referred to as collagenases I, II and III respectively, are able to initiate the intrahelical cleavage of the major fibril forming collagens I, II and III at neutral pH, and thus thought to define the rate-limiting step in normal tissue remodeling events. All can cleave additional substrates including other collagen subtypes. Collagenases cut collagen alpha chains at a single conserved Gly-Ile/Leu site approximately 3/4 of the molecule's length from the N-terminus (Fields 1991, Chung et al. 2004). The cleavage site is characterised by the motif G(I/L)(A/L); the G-I/L bond is cleaved. In collagen type I this corresponds to G953-I954 in the Uniprot canonical alpha chain sequences (often given as G775-I776 in literature). It is not clear why only this bond is cleaved, as the motif occurs at several other places in the chain. MMP14, a membrane-associated MMP also known as Membrane-type matrix metalloproteinase 1 (MT-MMP1), is able to cleave collagen types I, II and III (Ohuchi et al. 1997).
D2,4(S)2-BCAN ProteinQ96GW7 (Uniprot-TrEMBL)
D2,4(S)2-BCAN(23-360) ProteinQ96GW7 (Uniprot-TrEMBL)
D2,4(S)2-BCAN(23-395) ProteinQ96GW7 (Uniprot-TrEMBL)
D2,4(S)2-BCAN(361-911) ProteinQ96GW7 (Uniprot-TrEMBL)
D2,4(S)2-BCAN(396-911) ProteinQ96GW7 (Uniprot-TrEMBL)