Gastrin-CREB signalling pathway via PKC and MAPK (Homo sapiens)

From WikiPathways

Jump to: navigation, search
9, 10, 3118, 2221, 287, 2420322530111nucleoplasmcytosolRAF/MAP kinasecascadeHB-EGF:p-6Y-EGFRdimerRibosomal protein S6kinaseKRAS Protein Kinase C,alpha type: DAGEGFRp-T185,Y187-MAPK1 MMP3(100-477)GRB2-1:SOS1GRB2-1 CCKBR ADPGRB2:SOS1:HB-EGF:p-6Y-EGFRHBEGF(149-208)p-MAPK3/MAPK1/MAPK7dimersGRB2-1 DAGSOS1 MMP3GTP GTPKRAS HBEGF(63-148) HRAS GAST(76-92)CREB1p21 RAS:GDPRPS6KA1 NRAS GDPp-4S,T356,T570-RPS6KA2 PRKCA p-4S,T231,T365-RPS6KA3 PRKCAp-6Y-EGFR HBEGF(63-148) ATPGAST(76-92) HBEGF(20-62)RPS6KA3 HBEGF(20-208)DAG RPS6KA2 p-S133-CREB1G alpha (q)signalling eventsGastrin:CCKBRHRAS p21 RAS:GTPCCKBRp-T218,Y220-MAPK7 Phospho-Ribosomalprotein S6 kinaseSOS1 ATPHBEGF(63-148)ADPNRAS p-6Y-EGFR p-T202,Y204-MAPK3 p-4S,T359,T573-RPS6KA1 GDP 2827152-6, 12-14, 16...8, 1115


Description

Gastrin is a hormone whose main function is to stimulate secretion of hydrochloric acid by the gastric mucosa, which results in gastrin formation inhibition. This hormone also acts as a mitogenic factor for gastrointestinal epithelial cells. Gastrin has two biologically active peptide forms, G34 and G17.Gastrin gene expression is upregulated in both a number of pre-malignant conditions and in established cancer through a variety of mechanisms. Depending on the tissue where it is expressed and the level of expression, differential processing of the polypeptide product leads to the production of different biologically active peptides. In turn, acting through the classical gastrin cholecystokinin B receptor CCK-BR, its isoforms and alternative receptors, these peptides trigger signalling pathways which influence the expression of downstream genes that affect cell survival, angiogenesis and invasion (Wank 1995, de Weerth et al. 1999, Grabowska & Watson 2007) View original pathway at:Reactome.

Comments

Reactome-Converter 
Pathway is converted from Reactome ID: 881907
Reactome-version 
Reactome version: 66
Reactome Author 
Reactome Author: Jassal, Bijay, Tripathi, S

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. De Cesare D, Jacquot S, Hanauer A, Sassone-Corsi P.; ''Rsk-2 activity is necessary for epidermal growth factor-induced phosphorylation of CREB protein and transcription of c-fos gene.''; PubMed Europe PMC
  2. Roskoski R.; ''ERK1/2 MAP kinases: structure, function, and regulation.''; PubMed Europe PMC
  3. Plotnikov A, Zehorai E, Procaccia S, Seger R.; ''The MAPK cascades: signaling components, nuclear roles and mechanisms of nuclear translocation.''; PubMed Europe PMC
  4. McKay MM, Morrison DK.; ''Integrating signals from RTKs to ERK/MAPK.''; PubMed Europe PMC
  5. Cseh B, Doma E, Baccarini M.; ''"RAF" neighborhood: protein-protein interaction in the Raf/Mek/Erk pathway.''; PubMed Europe PMC
  6. Cargnello M, Roux PP.; ''Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases.''; PubMed Europe PMC
  7. Okutani T, Okabayashi Y, Kido Y, Sugimoto Y, Sakaguchi K, Matuoka K, Takenawa T, Kasuga M.; ''Grb2/Ash binds directly to tyrosines 1068 and 1086 and indirectly to tyrosine 1148 of activated human epidermal growth factor receptors in intact cells.''; PubMed Europe PMC
  8. Fukumoto T, Kubota Y, Kitanaka A, Yamaoka G, Ohara-Waki F, Imataki O, Ohnishi H, Ishida T, Tanaka T.; ''Gab1 transduces PI3K-mediated erythropoietin signals to the Erk pathway and regulates erythropoietin-dependent proliferation and survival of erythroid cells.''; PubMed Europe PMC
  9. Wank SA.; ''Cholecystokinin receptors.''; PubMed Europe PMC
  10. Grabowska AM, Watson SA.; ''Role of gastrin peptides in carcinogenesis.''; PubMed Europe PMC
  11. Chardin P, Camonis JH, Gale NW, van Aelst L, Schlessinger J, Wigler MH, Bar-Sagi D.; ''Human Sos1: a guanine nucleotide exchange factor for Ras that binds to GRB2.''; PubMed Europe PMC
  12. Turjanski AG, Vaqué JP, Gutkind JS.; ''MAP kinases and the control of nuclear events.''; PubMed Europe PMC
  13. Cantwell-Dorris ER, O'Leary JJ, Sheils OM.; ''BRAFV600E: implications for carcinogenesis and molecular therapy.''; PubMed Europe PMC
  14. Wellbrock C, Karasarides M, Marais R.; ''The RAF proteins take centre stage.''; PubMed Europe PMC
  15. Ross D, Joyner WL.; ''Resting distribution and stimulated translocation of protein kinase C isoforms alpha, epsilon and zeta in response to bradykinin and TNF in human endothelial cells.''; PubMed Europe PMC
  16. Roskoski R.; ''MEK1/2 dual-specificity protein kinases: structure and regulation.''; PubMed Europe PMC
  17. Roskoski R.; ''RAF protein-serine/threonine kinases: structure and regulation.''; PubMed Europe PMC
  18. Elenius K, Paul S, Allison G, Sun J, Klagsbrun M.; ''Activation of HER4 by heparin-binding EGF-like growth factor stimulates chemotaxis but not proliferation.''; PubMed Europe PMC
  19. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R, Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kosmidou V, Menzies A, Mould C, Parker A, Stevens C, Watt S, Hooper S, Wilson R, Jayatilake H, Gusterson BA, Cooper C, Shipley J, Hargrave D, Pritchard-Jones K, Maitland N, Chenevix-Trench G, Riggins GJ, Bigner DD, Palmieri G, Cossu A, Flanagan A, Nicholson A, Ho JW, Leung SY, Yuen ST, Weber BL, Seigler HF, Darrow TL, Paterson H, Marais R, Marshall CJ, Wooster R, Stratton MR, Futreal PA.; ''Mutations of the BRAF gene in human cancer.''; PubMed Europe PMC
  20. Ranganathan A, Pearson GW, Chrestensen CA, Sturgill TW, Cobb MH.; ''The MAP kinase ERK5 binds to and phosphorylates p90 RSK.''; PubMed Europe PMC
  21. Gilon P, Henquin JC.; ''Mechanisms and physiological significance of the cholinergic control of pancreatic beta-cell function.''; PubMed Europe PMC
  22. Higashiyama S, Abraham JA, Miller J, Fiddes JC, Klagsbrun M.; ''A heparin-binding growth factor secreted by macrophage-like cells that is related to EGF.''; PubMed Europe PMC
  23. Roberts PJ, Der CJ.; ''Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer.''; PubMed Europe PMC
  24. Batzer AG, Rotin D, Ureña JM, Skolnik EY, Schlessinger J.; ''Hierarchy of binding sites for Grb2 and Shc on the epidermal growth factor receptor.''; PubMed Europe PMC
  25. Reuben PM, Brogley MA, Sun Y, Cheung HS.; ''Molecular mechanism of the induction of metalloproteinases 1 and 3 in human fibroblasts by basic calcium phosphate crystals. Role of calcium-dependent protein kinase C alpha.''; PubMed Europe PMC
  26. Kyriakis JM, Avruch J.; ''Mammalian MAPK signal transduction pathways activated by stress and inflammation: a 10-year update.''; PubMed Europe PMC
  27. Mizuno N, Itoh H.; ''Functions and regulatory mechanisms of Gq-signaling pathways.''; PubMed Europe PMC
  28. Tanimura A, Nezu A, Morita T, Hashimoto N, Tojyo Y.; ''Interplay between calcium, diacylglycerol, and phosphorylation in the spatial and temporal regulation of PKCalpha-GFP.''; PubMed Europe PMC
  29. Brown MD, Sacks DB.; ''Protein scaffolds in MAP kinase signalling.''; PubMed Europe PMC
  30. Suzuki M, Raab G, Moses MA, Fernandez CA, Klagsbrun M.; ''Matrix metalloproteinase-3 releases active heparin-binding EGF-like growth factor by cleavage at a specific juxtamembrane site.''; PubMed Europe PMC
  31. de Weerth A, Bläker M, von Schrenck T.; ''[Receptors for cholecystokinin and gastrin]''; PubMed Europe PMC
  32. Ito M, Matsui T, Taniguchi T, Tsukamoto T, Murayama T, Arima N, Nakata H, Chiba T, Chihara K.; ''Functional characterization of a human brain cholecystokinin-B receptor. A trophic effect of cholecystokinin and gastrin.''; PubMed Europe PMC

History

View all...
CompareRevisionActionTimeUserComment
101614view11:48, 1 November 2018ReactomeTeamreactome version 66
101150view21:34, 31 October 2018ReactomeTeamreactome version 65
100678view20:07, 31 October 2018ReactomeTeamreactome version 64
100228view16:52, 31 October 2018ReactomeTeamreactome version 63
99779view15:18, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
99335view12:47, 31 October 2018ReactomeTeamreactome version 62
93801view13:37, 16 August 2017ReactomeTeamreactome version 61
93339view11:20, 9 August 2017ReactomeTeamreactome version 61
87453view14:00, 22 July 2016MkutmonOntology Term : 'signaling pathway' added !
86425view09:17, 11 July 2016ReactomeTeamreactome version 56
83266view10:35, 18 November 2015ReactomeTeamVersion54
81375view12:54, 21 August 2015ReactomeTeamVersion53
76844view08:07, 17 July 2014ReactomeTeamFixed remaining interactions
76548view11:53, 16 July 2014ReactomeTeamFixed remaining interactions
75881view09:53, 11 June 2014ReactomeTeamRe-fixing comment source
75581view10:41, 10 June 2014ReactomeTeamReactome 48 Update
74936view13:46, 8 May 2014AnweshaFixing comment source for displaying WikiPathways description
74580view08:37, 30 April 2014ReactomeTeamNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
ADPMetaboliteCHEBI:16761 (ChEBI)
ATPMetaboliteCHEBI:15422 (ChEBI)
CCKBR ProteinP32239 (Uniprot-TrEMBL)
CCKBRProteinP32239 (Uniprot-TrEMBL)
CREB1ProteinP16220 (Uniprot-TrEMBL)
DAG MetaboliteCHEBI:17815 (ChEBI)
DAGMetaboliteCHEBI:17815 (ChEBI)
EGFRProteinP00533 (Uniprot-TrEMBL)
G alpha (q) signalling eventsPathwayR-HSA-416476 (Reactome) The classic signalling route for G alpha (q) is activation of phospholipase C beta thereby triggering phosphoinositide hydrolysis, calcium mobilization and protein kinase C activation. This provides a path to calcium-regulated kinases and phosphatases, GEFs, MAP kinase cassettes and other proteins that mediate cellular responses ranging from granule secretion, integrin activation, and aggregation in platelets. Gq participates in many other signalling events including direct interaction with RhoGEFs that stimulate RhoA activity and inhibition of PI3K. Both in vitro and in vivo, the G-protein Gq seems to be the predominant mediator of the activation of platelets. Moreover, G alpha (q) can stimulate the activation of Burton tyrosine kinase (Ma Y C et al. 1998). Regulator of G-protein Signalling (RGS) proteins can regulate the activity of G alpha (z) (Soundararajan M et al. 2008).
GAST(76-92) ProteinP01350 (Uniprot-TrEMBL)
GAST(76-92)ProteinP01350 (Uniprot-TrEMBL)
GDP MetaboliteCHEBI:17552 (ChEBI)
GDPMetaboliteCHEBI:17552 (ChEBI)
GRB2-1 ProteinP62993-1 (Uniprot-TrEMBL)
GRB2-1:SOS1ComplexR-HSA-109797 (Reactome)
GRB2:SOS1:HB-EGF:p-6Y-EGFRComplexR-HSA-2179409 (Reactome)
GTP MetaboliteCHEBI:15996 (ChEBI)
GTPMetaboliteCHEBI:15996 (ChEBI)
Gastrin:CCKBRComplexR-HSA-870262 (Reactome)
HB-EGF:p-6Y-EGFR dimerComplexR-HSA-2179410 (Reactome)
HBEGF(149-208)ProteinQ99075 (Uniprot-TrEMBL)
HBEGF(20-208)ProteinQ99075 (Uniprot-TrEMBL)
HBEGF(20-62)ProteinQ99075 (Uniprot-TrEMBL)
HBEGF(63-148) ProteinQ99075 (Uniprot-TrEMBL)
HBEGF(63-148)ProteinQ99075 (Uniprot-TrEMBL)
HRAS ProteinP01112 (Uniprot-TrEMBL)
KRAS ProteinP01116 (Uniprot-TrEMBL)
MMP3(100-477)ProteinP08254 (Uniprot-TrEMBL)
MMP3ProteinP08254 (Uniprot-TrEMBL)
NRAS ProteinP01111 (Uniprot-TrEMBL)
PRKCA ProteinP17252 (Uniprot-TrEMBL)
PRKCAProteinP17252 (Uniprot-TrEMBL)
Phospho-Ribosomal protein S6 kinaseComplexR-HSA-199849 (Reactome)
Protein Kinase C, alpha type: DAGComplexR-HSA-422275 (Reactome)
RAF/MAP kinase cascadePathwayR-HSA-5673001 (Reactome) The RAS-RAF-MEK-ERK pathway regulates processes such as proliferation, differentiation, survival, senescence and cell motility in response to growth factors, hormones and cytokines, among others. Binding of these stimuli to receptors in the plasma membrane promotes the GEF-mediated activation of RAS at the plasma membrane and initiates the three-tiered kinase cascade of the conventional MAPK cascades. GTP-bound RAS recruits RAF (the MAPK kinase kinase), and promotes its dimerization and activation (reviewed in Cseh et al, 2014; Roskoski, 2010; McKay and Morrison, 2007; Wellbrock et al, 2004). Activated RAF phosphorylates the MAPK kinase proteins MEK1 and MEK2 (also known as MAP2K1 and MAP2K2), which in turn phophorylate the proline-directed kinases ERK1 and 2 (also known as MAPK3 and MAPK1) (reviewed in Roskoski, 2012a, b; Kryiakis and Avruch, 2012). Activated ERK proteins may undergo dimerization and have identified targets in both the nucleus and the cytosol; consistent with this, a proportion of activated ERK protein relocalizes to the nucleus in response to stimuli (reviewed in Roskoski 2012b; Turjanski et al, 2007; Plotnikov et al, 2010; Cargnello et al, 2011). Although initially seen as a linear cascade originating at the plasma membrane and culminating in the nucleus, the RAS/RAF MAPK cascade is now also known to be activated from various intracellular location. Temporal and spatial specificity of the cascade is achieved in part through the interaction of pathway components with numerous scaffolding proteins (reviewed in McKay and Morrison, 2007; Brown and Sacks, 2009).
The importance of the RAS/RAF MAPK cascade is highlighted by the fact that components of this pathway are mutated with high frequency in a large number of human cancers. Activating mutations in RAS are found in approximately one third of human cancers, while ~8% of tumors express an activated form of BRAF (Roberts and Der, 2007; Davies et al, 2002; Cantwell-Dorris et al, 2011).
RPS6KA1 ProteinQ15418 (Uniprot-TrEMBL)
RPS6KA2 ProteinQ15349 (Uniprot-TrEMBL)
RPS6KA3 ProteinP51812 (Uniprot-TrEMBL)
Ribosomal protein S6 kinaseComplexR-HSA-199858 (Reactome)
SOS1 ProteinQ07889 (Uniprot-TrEMBL)
p-4S,T231,T365-RPS6KA3 ProteinP51812 (Uniprot-TrEMBL)
p-4S,T356,T570-RPS6KA2 ProteinQ15349 (Uniprot-TrEMBL)
p-4S,T359,T573-RPS6KA1 ProteinQ15418 (Uniprot-TrEMBL)
p-6Y-EGFR ProteinP00533 (Uniprot-TrEMBL)
p-MAPK3/MAPK1/MAPK7 dimersComplexR-HSA-199878 (Reactome)
p-S133-CREB1ProteinP16220 (Uniprot-TrEMBL)
p-T185,Y187-MAPK1 ProteinP28482 (Uniprot-TrEMBL)
p-T202,Y204-MAPK3 ProteinP27361 (Uniprot-TrEMBL)
p-T218,Y220-MAPK7 ProteinQ13164 (Uniprot-TrEMBL)
p21 RAS:GDPComplexR-HSA-109796 (Reactome)
p21 RAS:GTPComplexR-HSA-109783 (Reactome)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
ADPArrowR-HSA-198746 (Reactome)
ADPArrowR-HSA-199895 (Reactome)
ATPR-HSA-198746 (Reactome)
ATPR-HSA-199895 (Reactome)
CCKBRR-HSA-870269 (Reactome)
CREB1R-HSA-199895 (Reactome)
DAGR-HSA-400015 (Reactome)
EGFRR-HSA-2179387 (Reactome)
GAST(76-92)R-HSA-870269 (Reactome)
GDPArrowR-HSA-2179407 (Reactome)
GRB2-1:SOS1R-HSA-2179415 (Reactome)
GRB2:SOS1:HB-EGF:p-6Y-EGFRArrowR-HSA-2179415 (Reactome)
GRB2:SOS1:HB-EGF:p-6Y-EGFRmim-catalysisR-HSA-2179407 (Reactome)
GTPR-HSA-2179407 (Reactome)
Gastrin:CCKBRArrowR-HSA-870269 (Reactome)
HB-EGF:p-6Y-EGFR dimerArrowR-HSA-2179387 (Reactome)
HB-EGF:p-6Y-EGFR dimerR-HSA-2179415 (Reactome)
HBEGF(149-208)ArrowR-HSA-2179402 (Reactome)
HBEGF(20-208)R-HSA-2179402 (Reactome)
HBEGF(20-62)ArrowR-HSA-2179402 (Reactome)
HBEGF(63-148)ArrowR-HSA-2179402 (Reactome)
HBEGF(63-148)R-HSA-2179387 (Reactome)
MMP3(100-477)ArrowR-HSA-2179413 (Reactome)
MMP3(100-477)mim-catalysisR-HSA-2179402 (Reactome)
MMP3R-HSA-2179413 (Reactome)
PRKCAR-HSA-400015 (Reactome)
Phospho-Ribosomal protein S6 kinaseArrowR-HSA-198746 (Reactome)
Phospho-Ribosomal protein S6 kinasemim-catalysisR-HSA-199895 (Reactome)
Protein Kinase C, alpha type: DAGArrowR-HSA-400015 (Reactome)
Protein Kinase C, alpha type: DAGmim-catalysisR-HSA-2179413 (Reactome)
R-HSA-198746 (Reactome) The p90 ribosomal S6 kinases (RSK1-4) comprise a family of serine/threonine kinases that lie at the terminus of the ERK pathway. RSK family members are unusual among serine/threonine kinases in that they contain two distinct kinase domains, both of which are catalytically functional . The C-terminal kinase domain is believed to be involved in autophosphorylation, a critical step in RSK activation, whereas the N-terminal kinase domain, which is homologous to members of the AGC superfamily of kinases, is responsible for the phosphorylation of all known exogenous substrates of RSK.
RSKs can be activated by the ERKs (ERK1, 2, 5) in the cytoplasm as well as in the nucleus, they both have cytoplasmic and nuclear substrates, and they are able to move from nucleus to cytoplasm. Efficient RSK activation by ERKs requires its interaction through a docking site located near the RSK C terminus. The mechanism of RSK activation has been studied mainly with regard to ERK1 and ERK2. RSK activation leads to the phosphorylation of four essential residues Ser239, Ser381, Ser398, and Thr590, and two additional sites, Thr377 and Ser749 (the amino acid numbering refers to RSK1). ERK is thought to play at least two roles in RSK1 activation. First, activated ERK phosphorylates RSK1 on Thr590, and possibly on Thr377 and Ser381, and second, ERK brings RSK1 into close proximity to membrane-associated kinases that may phosphorylate RSK1 on Ser381 and Ser398.
Moreover, RSKs and ERK1/2 form a complex that transiently dissociates upon growth factor signalling. Complex dissociation requires phosphorylation of RSK1 serine 749, a growth factor regulated phosphorylation site located near the ERK docking site. Serine 749 is phosphorylated by the N-terminal kinase domain of RSK1 itself. ERK1/2 docking to RSK2 and RSK3 is also regulated in a similar way. The length of RSK activation following growth factor stimulation depends on the duration of the RSK/ERK complex, which, in turn, differs among the different RSK isoforms. RSK1 and RSK2 readily dissociate from ERK1/2 following growth factor stimulation stimulation, but RSK3 remains associated with active ERK1/2 longer, and also remains active longer than RSK1 and RSK2.

R-HSA-199895 (Reactome) CREB is phosphorylated at Serine 133 by RSK1/2/3.
R-HSA-2179387 (Reactome) The heparin-binding EGF growth factor (HBEGF) is a member of the EGF family of growth factors that binds to and activates the EGF receptor EGFR/ErbB1 and ErbB4 (not shown here) (Higashiyama et al. 1991, Elenius et al. 1997). The details which describe receptor dimerisation on ligand binding and autophosphorylation from experiments in mice have been omitted here.
R-HSA-2179402 (Reactome) Gastrin can induce cleavage of pro-HBEGF via MMP3, releasing mature HBEGF. This event is based on evidence from mouse experiments (Suzuki et al. 1997).
R-HSA-2179407 (Reactome) SOS1 is the guanine nucleotide exchange factor (GEF) for RAS. SOS1 activates RAS nucleotide exchange from the inactive form (bound to GDP) to an active form (bound to GTP) (Chardin et al. 1993).
R-HSA-2179413 (Reactome) Gastrin activated PKC pathway leads to the induction of matrix metalloproteinase 3 (MMP3) synthesis (Reuben et al. 2002). The cleavage and autocatalysis steps to obtain the fully activated form of MMP3 have been omitted here.
R-HSA-2179415 (Reactome) Cytoplasmic target proteins containing the SH2 domain can bind to activated EGFR. One such protein, growth factor receptor-bound protein 2 (GRB2), can bind activated EGFR with its SH2 domain whilst in complex with SOS through its SH3 domain. GRB2 can bind at either Y1068 and/or Y1086 autophosphorylation sites on the receptor (Batzer et al. 1994, Okutani et al. 1994).
R-HSA-400015 (Reactome) Diacylglycerol, produced by PLC beta-mediated PIP2 hydrolysis in G alpha (q) signalling, remains in the plasma membrane and binds Protein Kinase C alpha (PKC-alpha), causing PKC-alpha to translocate from the cytosol to the plasma membrane. PKC-alpha is thereby activated and phosphorylates target proteins.
R-HSA-870269 (Reactome) Gastrin receptors (gastric cholecystokinin B receptor, CCK-BR) mediate acid secretion from parietal cells, release of histamine from enterochromaffin-like (ECL) cells and contraction of smooth muscle (Ito et al. 1993).The hormone gastrin is the central regulator of gastric acid secretion and in addition, plays a prominent role in regulation of growth and differentiation of gastric and colonic mucosa.
Ribosomal protein S6 kinaseR-HSA-198746 (Reactome)
p-MAPK3/MAPK1/MAPK7 dimersmim-catalysisR-HSA-198746 (Reactome)
p-S133-CREB1ArrowR-HSA-199895 (Reactome)
p21 RAS:GDPR-HSA-2179407 (Reactome)
p21 RAS:GTPArrowR-HSA-2179407 (Reactome)
Personal tools