Hordeum vulgare Flowering Time Pathway (Hordeum vulgare)

From WikiPathways

Jump to: navigation, search


Description

Barley (Hordeum vulgare L.), a cereal species with major economic and agricultural impact, is a facultative long-day plant, i.e. it flowers earlier in response to long days than to short days. Flowering time genes of the photoperiod, vernalization and circadian clock pathways are best studied in barley. The Ppd-H1 gene, a pseudo-response regulator gene, is thought to be key for flowering induction under long days. Further important genes which convey flowering in barley under both photoperiods are homologs of FLOWERING LOCUS T (FT) and CONSTANS (CO). Flowering in response to vernalization is economically important in temperate cereals like barley and wheat and is controlled by the interaction of Vrn-H1 and Vrn-H2.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Dubcovsky J., Chen C., Yan L.; ''Molecular characterization of the allelic variation at the VRN-H2 vernalization locus in barley''; Molecular Breeding 15: 395-407, 2005
  2. Turner A, Beales J, Faure S, Dunford RP, Laurie DA; ''The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley.''; Science, 2005 PubMed
  3. Campoli C, Shtaya M, Davis SJ, von Korff M; ''Expression conservation within the circadian clock of a monocot: natural variation at barley Ppd-H1 affects circadian expression of flowering time genes, but not clock orthologs.''; BMC Plant Biol, 2012 PubMed
  4. Wang G, Schmalenbach I, von Korff M, Léon J, Kilian B, Rode J, Pillen K; ''Association of barley photoperiod and vernalization genes with QTLs for flowering time and agronomic traits in a BC2DH population and a set of wild barley introgression lines.''; Theor Appl Genet, 2010 PubMed
  5. Zakhrabekova S, Gough SP, Braumann I, Müller AH, Lundqvist J, Ahmann K, Dockter C, Matyszczak I, Kurowska M, Druka A, Waugh R, Graner A, Stein N, Steuernagel B, Lundqvist U, Hansson M; ''Induced mutations in circadian clock regulator Mat-a facilitated short-season adaptation and range extension in cultivated barley.''; Proc Natl Acad Sci U S A, 2012 PubMed
  6. Jones H, Leigh FJ, Mackay I, Bower MA, Smith LM, Charles MP, Jones G, Jones MK, Brown TA, Powell W; ''Population-based resequencing reveals that the flowering time adaptation of cultivated barley originated east of the Fertile Crescent.''; Mol Biol Evol, 2008 PubMed
  7. Kikuchi R, Kawahigashi H, Oshima M, Ando T, Handa H; ''The differential expression of HvCO9, a member of the CONSTANS-like gene family, contributes to the control of flowering under short-day conditions in barley.''; J Exp Bot, 2012 PubMed
  8. Comadran J, Kilian B, Russell J, Ramsay L, Stein N, Ganal M, Shaw P, Bayer M, Thomas W, Marshall D, Hedley P, Tondelli A, Pecchioni N, Francia E, Korzun V, Walther A, Waugh R; ''Natural variation in a homolog of Antirrhinum CENTRORADIALIS contributed to spring growth habit and environmental adaptation in cultivated barley.''; Nat Genet, 2012 PubMed
  9. Faure S, Turner AS, Gruszka D, Christodoulou V, Davis SJ, von Korff M, Laurie DA; ''Mutation at the circadian clock gene EARLY MATURITY 8 adapts domesticated barley (Hordeum vulgare) to short growing seasons.''; Proc Natl Acad Sci U S A, 2012 PubMed
  10. von Zitzewitz J, Szucs P, Dubcovsky J, Yan L, Francia E, Pecchioni N, Casas A, Chen TH, Hayes PM, Skinner JS; ''Molecular and structural characterization of barley vernalization genes.''; Plant Mol Biol, 2005 PubMed
  11. Cuesta-Marcos A, Szucs P, Close TJ, Filichkin T, Muehlbauer GJ, Smith KP, Hayes PM; ''Genome-wide SNPs and re-sequencing of growth habit and inflorescence genes in barley: implications for association mapping in germplasm arrays varying in size and structure.''; BMC Genomics, 2010 PubMed
  12. Griffiths S, Dunford RP, Coupland G, Laurie DA; ''The evolution of CONSTANS-like gene families in barley, rice, and Arabidopsis.''; Plant Physiol, 2003 PubMed
  13. Mayer KF, Waugh R, Brown JW, Schulman A, Langridge P, Platzer M, Fincher GB, Muehlbauer GJ, Sato K, Close TJ, Wise RP, Stein N; ''A physical, genetic and functional sequence assembly of the barley genome.''; Nature, 2012 PubMed
  14. Casao MC, Igartua E, Karsai I, Lasa JM, Gracia MP, Casas AM; ''Expression analysis of vernalization and day-length response genes in barley (Hordeum vulgare L.) indicates that VRNH2 is a repressor of PPDH2 (HvFT3) under long days.''; J Exp Bot, 2011 PubMed
  15. Matsumoto T, Tanaka T, Sakai H, Amano N, Kanamori H, Kurita K, Kikuta A, Kamiya K, Yamamoto M, Ikawa H, Fujii N, Hori K, Itoh T, Sato K; ''Comprehensive sequence analysis of 24,783 barley full-length cDNAs derived from 12 clone libraries.''; Plant Physiol, 2011 PubMed
  16. Faure S, Higgins J, Turner A, Laurie DA; ''''; , PubMed
  17. Szucs P, Skinner JS, Karsai I, Cuesta-Marcos A, Haggard KG, Corey AE, Chen TH, Hayes PM; ''Validation of the VRN-H2/VRN-H1 epistatic model in barley reveals that intron length variation in VRN-H1 may account for a continuum of vernalization sensitivity.''; Mol Genet Genomics, 2007 PubMed
  18. Dunford RP, Griffiths S, Christodoulou V, Laurie DA; ''Characterisation of a barley (Hordeum vulgare L.) homologue of the Arabidopsis flowering time regulator GIGANTEA.''; Theor Appl Genet, 2005 PubMed
  19. Karsai I, Szucs P, Koszegi B, Hayes PM, Casas A, Bedo Z, Veisz O; ''Effects of photo and thermo cycles on flowering time in barley: a genetical phenomics approach.''; J Exp Bot, 2008 PubMed
  20. Casao MC, Karsai I, Igartua E, Gracia MP, Veisz O, Casas AM; ''Adaptation of barley to mild winters: a role for PPDH2.''; BMC Plant Biol, 2011 PubMed
  21. Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J; ''The wheat and barley vernalization gene VRN3 is an orthologue of FT.''; Proc Natl Acad Sci U S A, 2006 PubMed
  22. Kikuchi R, Kawahigashi H, Ando T, Tonooka T, Handa H; ''Molecular and functional characterization of PEBP genes in barley reveal the diversification of their roles in flowering.''; Plant Physiol, 2009 PubMed
  23. Hong SY, Lee S, Seo PJ, Yang MS, Park CM; ''Identification and molecular characterization of a Brachypodium distachyon GIGANTEA gene: functional conservation in monocot and dicot plants.''; Plant Mol Biol, 2010 PubMed


History

View all...
CompareRevisionActionTimeUserComment
88461view17:51, 9 August 2016MbluemelOntology Term : 'signaling pathway' added !
88460view17:50, 9 August 2016MbluemelOntology Term : 'PW:0001115' removed !
81146view14:34, 28 July 2015Mbluemelupdated interactions, connected lines
81145view09:27, 28 July 2015MbluemelModified description
78777view23:59, 26 January 2015AlexanderPicoOntology Term : 'non-visual phototransduction pathway' added !
73627view21:33, 8 February 2014MaintBotremoving false data nodes
73626view21:29, 8 February 2014MaintBotRemoving double-lined rectangle
73625view21:25, 8 February 2014MaintBotNew pathway

External references

Datanodes

View all...
NameTypeDatabase referenceComment
Circadian ClockPathway
HvCENGeneProductK7QT26 (Uniprot-TrEMBL)
HvCO1GeneProductMLOC_6921 (Ensembl Plants) Chromosome: 7H
HvCO2GeneProductQ8L581 (Uniprot-TrEMBL) Chromosome: 6H
HvCO9GeneProductMLOC_75450 (Ensembl Plants)
HvELF3 (Eam8)GeneProductMLOC_75281 (Ensembl Plants)
HvFT2GeneProductA0S6X4 (Uniprot-TrEMBL) Chromosome: 3H
HvFT4GeneProductMLOC_74854 (Ensembl Plants) Chromosome: 2H
HvGIGeneProductMLOC_18291 (Ensembl Plants)
HvLUX1GeneProductAK357505 (EMBL)
Pathway NamePathway
PhotoperiodPathway
Ppd-H1 (HvPRR7)GeneProductMLOC_81154 (Ensembl Plants)
  • pseudo-response regulator gene
  • Chromosome: 2H
Ppd-H2 (HvFT3)GeneProduct
  • Chromosome: 1H
  • pseudoresponse regulator gene
VRN-H1GeneProductMLOC_61901 (Ensembl Plants)
  • MADS-box transcription factor
  • Chromosome: 5H
VRN-H2GeneProductQ68I23 (Uniprot/TrEMBL)
  • zinc finger motif and CCT domain
  • Chromosome: 4H
VRN-H3 (HvFT1)GeneProductMLOC_68576 (Ensembl Plants) Chromosome: 7H
VernalizationPathway

Annotated Interactions

No annotated interactions

Personal tools