tRNA Aminoacylation (Homo sapiens)

From WikiPathways

Jump to: navigation, search
5, 7, 16, 17, 20...143, 84534254323, 41384392815119392, 271822, 33, 362430326, 11, 292123102639123730441224354cytosolmitochondrial matrixPPiLys-tRNA(Lys)PPiadenosine5'-monophosphateadenosine5'-monophosphateL-AsnDARS LARS PPiL-IleGlyTrp-tRNA(Trp)ATPCARS2(1-?)ATPaminoacyl-tRNAsynthetasemultienzyme complexadenosine5'-monophosphateAIMP2 L-ValGlu-tRNA(Glu)QARS adenosine5'-monophosphateL-GluPPiLys-tRNA(Lys)PPiATPPPiAMPATPHis-tRNA(His)L-MetLARS AMPEEF1E1 GARS dimerLARS L-LysATPPPA2 AMPEEF1E1 tRNA(Arg)PPiTrp-tRNA(Trp)L-GlutRNA(His)PPiFARSB RARS TARS2(1-?)KARS L-GlnRARS tRNA(Ser)IARS KARS KARS Phe-tRNA(Phe)H2OPPitRNA(Ala)adenosine5'-monophosphateL-ThrATPHARS2Val-tRNA(Val)AMPCys-tRNA(Cys)adenosine5'-monophosphateNARSL-AlaATPtRNA(Ile)ATPATPKARS dimerLARS L-ThrGlu-tRNA(Glu)EPRS DARS tRNA(Tyr)L-MetATPAMPL-ProIARS DARS PPiATPATPPPiAMPAMPTyr-tRNA(Tyr)PARS2PPiAMPL-TyrLARS DARS KARS L-LeuMARS PPiPPiPPiMARS RARS Cys-tRNA(Cys)ATPEEF1E1 SARS2 adenosine5'-monophosphateL-PheEEF1E1 tRNA(Glu)tRNA(Cys)tRNA(Phe)SARS2 dimerDARS L-Proaminoacyl-tRNAsynthetasemultienzyme complextRNA(Thr)IARS adenosine5'-monophosphateSer-tRNA(Ser)MARS FARSA tRNA(Thr)adenosine5'-monophosphateMARS DARS MARS AMPEEF1E1 PPiIARS adenosine5'-monophosphateEEF1E1 adenosine5'-monophosphateQARS EEF1E1 LARS ATPATPDARS2 dimerKARS PPiMARS2SARS PPiPPiL-ArgCARS EPRS EPRS ATPAIMP1(1-312) IARS ATPGln-tRNA(Gln)PPiAIMP1(1-312) AIMP1(1-312) IARS aminoacyl-tRNAsynthetasemultienzyme complexRARS aminoacyl-tRNAsynthetasemultienzyme complexadenosine5'-monophosphatetRNA(Leu)PPiEPRS Pro-tRNA(Pro)AMPIARS PPitRNA(Trp)QARS L-PheCARS dimerATPAMPATPL-SerFARS A2B2 tetramerATPPPA2 dimerVARS2adenosine5'-monophosphateDARS AIMP2 ATPL-HistRNA(Glu)PiPPiEARS2QARS tRNA(His)LARS RARS L-IleWARS dimerAsn-tRNA(Asn)Thr-tRNA(Thr)tRNA(Phe)GlytRNA(Gly)Phe-tRNA(Phe)AIMP1(1-312) adenosine5'-monophosphateEPRS AMPATPtRNA(Tyr)L-AspDARS PPA1 dimerWARS WARS2QARS L-SerNARS2aminoacyl-tRNAsynthetasemultienzyme complexQARS RARS2PPiLeu-tRNA(Leu)SARS dimerATPtRNA(Arg)GARS(55-739) PPiFARS2(1-?)HARSATPATPQARS VARStRNA(Asp)Pro-tRNA(Pro)AARSLARS2(1-?)RARS tRNA(Lys)PPiL-TrpPPiL-AsnKARS PPiGly-tRNA(Gly)IARS2AMPaminoacyl-tRNAsynthetasemultienzyme complextRNA(Asn)DARS IARS AMPH2OL-HistRNA(Gln)YARS dimerLARS EEF1E1 PPiTARS dimerPPiPPiATPKARS EPRS PPitRNA(Asn)L-LeuDARS2 PPiL-ValGly-tRNA(Gly)L-AlatRNA(Pro)IARS Val-tRNA(Val)Asn-tRNA(Asn)TARS PPiATPadenosine5'-monophosphatePPiATPtRNA(Val)tRNA(Ala)AIMP2 adenosine5'-monophosphateArg-tRNA(Arg)tRNA(Pro)tRNA(Lys)MARS L-LysEPRS aminoacyl-tRNAsynthetasemultienzyme complexAIMP1(1-312) RARS tRNA(Ile)tRNA(Trp)GARS Ala-tRNA(Ala)PPiPPitRNA(Gln)tRNA(Leu)EPRS Mg2+Ala-tRNA(Ala)PPiL-CysKARS adenosine5'-monophosphateLARS MARS KARS Ile-tRNA(Ile)ATPtRNA(Asp)MARS AMPAIMP2 PiATPtRNA(Cys)Asp-tRNA(Asp)L-TyrPPA1 L-CysAIMP2 Arg-tRNA(Arg)AMPGln-tRNA(Gln)YARS PPiATPL-AspL-GlnHis-tRNA(His)ATPATPATPtRNA(Met)ATPAMPtRNA(Ser)AIMP1(1-312) Asp-tRNA(Asp)adenosine5'-monophosphateATPMg2+QARSIle-tRNA(Ile)aminoacyl-tRNAsynthetasemultienzyme complextRNA(Val)ATPTyr-tRNA(Tyr)PPitRNA(Met)AMPAIMP2 AIMP2 GARS dimerAARS2YARS2 AIMP1(1-312) Leu-tRNA(Leu)MARS RARS adenosine5'-monophosphateAMPL-TrpL-ArgThr-tRNA(Thr)EEF1E1 adenosine5'-monophosphateATPAIMP2 KARS ATPPPiATPYARS2 dimertRNA(Gly)AIMP1(1-312) QARS QARS Ser-tRNA(Ser)AMPMet-tRNA(Met)AIMP1(1-312) aminoacyl-tRNAsynthetasemultienzyme complexAIMP2 EPRS Met-tRNA(Met)RARS PPi13131313131313131311, 29


tRNA synthetases catalyze the ligation of tRNAs to their cognate amino acids in an ATP-dependent manner. The reaction proceeds in two steps. First, amino acid and ATP form an aminoacyl adenylate molecule, releasing pyrophosphate. The aminoacyl adenylate remains associated with the synthetase enzyme where, in the second step it reacts with tRNA to form aminoacyl tRNA and AMP. The rapid hydrolysis of pyrophosphate makes these reactions essentially irreversible under physiological conditions (Fersht and Kaethner 1976a). Specificity of the tRNA charging reactions is achieved both by specific recognition of amino acid and tRNA substrates by the synthetase, and by an editing process in which incorrect aminoacyl adenylate molecules (e.g., valyl adenylate associated with isoleucyl tRNA synthetase) are hydrolyzed rather than conjugated to tRNAs in the second step of the reaction (Baldwin and Berg 1966a,b; Fersht and Kaethner 1976b). The tRNA synthetases can be divided into two structural classes based on conserved amino acid sequence features (Burnbaum and Schimmel 1991).

A single synthetase mediates the charging of all of the tRNA species specific for any one amino acid but, with three exceptions, glycine, lysine, and glutamine, the synthetase that catalyzes aminoacylation of mitochondrial tRNAs is encoded by a different gene than the one that acts on mitochondrial tRNAs. Both mitochondrial and cytosolic tRNA synthetase enzymes are encoded by genes in the nuclear genome.<p>A number of tRNA synthetases are known to have functions distinct from tRNA charging (reviewed by Park et al. 2005). Additionally, mutations in several of the tRNA synthetases, often affecting protein domains that are dispensable in vitro for aminoacyl tRNA synthesis, are associated with a diverse array of neurological and other diseases (Antonellis and Green 2008; Park et al. 2008). These findings raise interest into the role of these enzymes in human development and disease.<p> View original pathway at:Reactome.</div>


Pathway is converted from Reactome ID: 379724
Reactome version: 66
Reactome Author 
Reactome Author: D'Eustachio, Peter

Quality Tags

Ontology Terms



View all...
  1. Jorgensen R, Søgaard TM, Rossing AB, Martensen PM, Justesen J.; ''Identification and characterization of human mitochondrial tryptophanyl-tRNA synthetase.''; PubMed
  2. Jordanova A, Irobi J, Thomas FP, Van Dijck P, Meerschaert K, Dewil M, Dierick I, Jacobs A, De Vriendt E, Guergueltcheva V, Rao CV, Tournev I, Gondim FA, D'Hooghe M, Van Gerwen V, Callaerts P, Van Den Bosch L, Timmermans JP, Robberecht W, Gettemans J, Thevelein JM, De Jonghe P, Kremensky I, Timmerman V.; ''Disrupted function and axonal distribution of mutant tyrosyl-tRNA synthetase in dominant intermediate Charcot-Marie-Tooth neuropathy.''; PubMed
  3. Shiba K, Ripmaster T, Suzuki N, Nichols R, Plotz P, Noda T, Schimmel P.; ''Human alanyl-tRNA synthetase: conservation in evolution of catalytic core and microhelix recognition.''; PubMed
  4. Davidson E, Caffarella J, Vitseva O, Hou YM, King MP.; ''Isolation of two cDNAs encoding functional human cytoplasmic cysteinyl-tRNA synthetase.''; PubMed
  5. Fersht AR, Kaethner MM.; ''Mechanism of aminoacylation of tRNA. Proof of the aminoacyl adenylate pathway for the isoleucyl- and tyrosyl-tRNA synthetases from Escherichia coli K12.''; PubMed
  6. Pynes GD, Younathan ES.; ''Purification and some properties of inorganic pyrophosphatase from human erythrocytes.''; PubMed
  7. Fersht AR, Kaethner MM.; ''Enzyme hyperspecificity. Rejection of threonine by the valyl-tRNA synthetase by misacylation and hydrolytic editing.''; PubMed
  8. Lee JW, Beebe K, Nangle LA, Jang J, Longo-Guess CM, Cook SA, Davisson MT, Sundberg JP, Schimmel P, Ackerman SL.; ''Editing-defective tRNA synthetase causes protein misfolding and neurodegeneration.''; PubMed
  9. Spencer AC, Heck A, Takeuchi N, Watanabe K, Spremulli LL.; ''Characterization of the human mitochondrial methionyl-tRNA synthetase.''; PubMed
  10. Vilalta A, Donovan D, Wood L, Vogeli G, Yang DC.; ''Cloning, sequencing and expression of a cDNA encoding mammalian valyl-tRNA synthetase.''; PubMed
  11. Thuillier L.; ''Purification and kinetic properties of human erythrocyte Mg2+-dependent inorganic pyrophosphatase.''; PubMed
  12. Lamour V, Quevillon S, Diriong S, N'Guyen VC, Lipinski M, Mirande M.; ''Evolution of the Glx-tRNA synthetase family: the glutaminyl enzyme as a case of horizontal gene transfer.''; PubMed
  13. Wolfe CL, Warrington JA, Davis S, Green S, Norcum MT.; ''Isolation and characterization of human nuclear and cytosolic multisynthetase complexes and the intracellular distribution of p43/EMAPII.''; PubMed
  14. O'Hanlon TP, Raben N, Miller FW.; ''A novel gene oriented in a head-to-head configuration with the human histidyl-tRNA synthetase (HRS) gene encodes an mRNA that predicts a polypeptide homologous to HRS.''; PubMed
  15. Kaminska M, Shalak V, Mirande M.; ''The appended C-domain of human methionyl-tRNA synthetase has a tRNA-sequestering function.'';