Neurotransmitter is stored in the synaptic vesicle in the pre-synaptic terminal prior to its release in the synaptic cleft upon depolarization of the pre-synaptic membrane. The release of the neurotransmitter is a multi-step process that is controlled by electrical signals passing through the axons in form of action potential. Neurotransmitters include glutamate, acetylcholine, nor-epinephrine, dopamine and seratonin. Each of the neurotransmitter cycle is independently described.
View original pathway at Reactome.
Binda F, Dipace C, Bowton E, Robertson SD, Lute BJ, Fog JU, Zhang M, Sen N, Colbran RJ, Gnegy ME, Gether U, Javitch JA, Erreger K, Galli A.; ''Syntaxin 1A interaction with the dopamine transporter promotes amphetamine-induced dopamine efflux.''; PubMedEurope PMCScholia
Jen JC, Wan J, Palos TP, Howard BD, Baloh RW.; ''Mutation in the glutamate transporter EAAT1 causes episodic ataxia, hemiplegia, and seizures.''; PubMedEurope PMCScholia
Quesada AR, Sanchez-Jimenez F, Perez-Rodriguez J, Marquez J, Medina MA, Nuñez de Castro I.; ''Purification of phosphate-dependent glutaminase from isolated mitochondria of Ehrlich ascites-tumour cells.''; PubMedEurope PMCScholia
Sun L, Bittner MA, Holz RW.; ''Rim, a component of the presynaptic active zone and modulator of exocytosis, binds 14-3-3 through its N terminus.''; PubMedEurope PMCScholia
Takamori S, Riedel D, Jahn R.; ''Immunoisolation of GABA-specific synaptic vesicles defines a functionally distinct subset of synaptic vesicles.''; PubMedEurope PMCScholia
Barclay JW, Craig TJ, Fisher RJ, Ciufo LF, Evans GJ, Morgan A, Burgoyne RD.; ''Phosphorylation of Munc18 by protein kinase C regulates the kinetics of exocytosis.''; PubMedEurope PMCScholia
Buddhala C, Hsu CC, Wu JY.; ''A novel mechanism for GABA synthesis and packaging into synaptic vesicles.''; PubMedEurope PMCScholia
Hong SB, Li CM, Rhee HJ, Park JH, He X, Levy B, Yoo OJ, Schuchman EH.; ''Molecular cloning and characterization of a human cDNA and gene encoding a novel acid ceramidase-like protein.''; PubMedEurope PMCScholia
Riento K, Galli T, Jansson S, Ehnholm C, Lehtonen E, Olkkonen VM.; ''Interaction of Munc-18-2 with syntaxin 3 controls the association of apical SNAREs in epithelial cells.''; PubMedEurope PMCScholia
Henry JP, Botton D, Sagne C, Isambert MF, Desnos C, Blanchard V, Raisman-Vozari R, Krejci E, Massoulie J, Gasnier B.; ''Biochemistry and molecular biology of the vesicular monoamine transporter from chromaffin granules.''; PubMedEurope PMCScholia
Melone M, Varoqui H, Erickson JD, Conti F.; ''Localization of the Na(+)-coupled neutral amino acid transporter 2 in the cerebral cortex.''; PubMedEurope PMCScholia
Brunner HG, Nelen M, Breakefield XO, Ropers HH, van Oost BA.; ''Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A.''; PubMedEurope PMCScholia
Stein A, Radhakrishnan A, Riedel D, Fasshauer D, Jahn R.; ''Synaptotagmin activates membrane fusion through a Ca2+-dependent trans interaction with phospholipids.''; PubMedEurope PMCScholia
Gorboulev V, Ulzheimer JC, Akhoundova A, Ulzheimer-Teuber I, Karbach U, Quester S, Baumann C, Lang F, Busch AE, Koepsell H.; ''Cloning and characterization of two human polyspecific organic cation transporters.''; PubMedEurope PMCScholia
Bak LK, Schousboe A, Waagepetersen HS.; ''The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer.''; PubMedEurope PMCScholia
Seal RP, Akil O, Yi E, Weber CM, Grant L, Yoo J, Clause A, Kandler K, Noebels JL, Glowatzki E, Lustig LR, Edwards RH.; ''Sensorineural deafness and seizures in mice lacking vesicular glutamate transporter 3.''; PubMedEurope PMCScholia
Lin CI, Orlov I, Ruggiero AM, Dykes-Hoberg M, Lee A, Jackson M, Rothstein JD.; ''Modulation of the neuronal glutamate transporter EAAC1 by the interacting protein GTRAP3-18.''; PubMedEurope PMCScholia
Butz S, Okamoto M, Südhof TC.; ''A tripartite protein complex with the potential to couple synaptic vesicle exocytosis to cell adhesion in brain.''; PubMedEurope PMCScholia
Sun L, Bittner MA, Holz RW.; ''Rab3a binding and secretion-enhancing domains in Rim1 are separate and unique. Studies in adrenal chromaffin cells.''; PubMedEurope PMCScholia
Mueller HT, Borg JP, Margolis B, Turner RS.; ''Modulation of amyloid precursor protein metabolism by X11alpha /Mint-1. A deletion analysis of protein-protein interaction domains.''; PubMedEurope PMCScholia
Gómez-Fabre PM, Aledo JC, Del Castillo-Olivares A, Alonso FJ, Núñez De Castro I, Campos JA, Márquez J.; ''Molecular cloning, sequencing and expression studies of the human breast cancer cell glutaminase.''; PubMedEurope PMCScholia
Iioka H, Moriyama I, Kyuma M, Ito K, Amasaki M, Ichijo M.; ''[Studies on L-glutamate transport mechanism in human placental trophoblast microvilli membrane vesicles].''; PubMedEurope PMCScholia
Tsuboi K, Sun YX, Okamoto Y, Araki N, Tonai T, Ueda N.; ''Molecular characterization of N-acylethanolamine-hydrolyzing acid amidase, a novel member of the choloylglycine hydrolase family with structural and functional similarity to acid ceramidase.''; PubMedEurope PMCScholia
Surratt CK, Persico AM, Yang XD, Edgar SR, Bird GS, Hawkins AL, Griffin CA, Li X, Jabs EW, Uhl GR.; ''A human synaptic vesicle monoamine transporter cDNA predicts posttranslational modifications, reveals chromosome 10 gene localization and identifies TaqI RFLPs.''; PubMedEurope PMCScholia
Augustin I, Rosenmund C, Südhof TC, Brose N.; ''Munc13-1 is essential for fusion competence of glutamatergic synaptic vesicles.''; PubMedEurope PMCScholia
Johnson RG.; ''Accumulation of biological amines into chromaffin granules: a model for hormone and neurotransmitter transport.''; PubMedEurope PMCScholia
Elgadi KM, Meguid RA, Qian M, Souba WW, Abcouwer SF.; ''Cloning and analysis of unique human glutaminase isoforms generated by tissue-specific alternative splicing.''; PubMedEurope PMCScholia
Okuda T, Haga T.; ''Functional characterization of the human high-affinity choline transporter.''; PubMedEurope PMCScholia
Gopalakrishnan A, Sievert M, Ruoho AE.; ''Identification of the substrate binding region of vesicular monoamine transporter-2 (VMAT-2) using iodoaminoflisopolol as a novel photoprobe.''; PubMedEurope PMCScholia
Zhou Y, Danbolt NC.; ''Glutamate as a neurotransmitter in the healthy brain.''; PubMedEurope PMCScholia
Michaelson DM, Angel I.; ''Determination of delta pH in cholinergic synaptic vesicles: its effect on storage and release of acetylcholine.''; PubMedEurope PMCScholia
Khvotchev M, Dulubova I, Sun J, Dai H, Rizo J, Südhof TC.; ''Dual modes of Munc18-1/SNARE interactions are coupled by functionally critical binding to syntaxin-1 N terminus.''; PubMedEurope PMCScholia
Toonen RF, de Vries KJ, Zalm R, Südhof TC, Verhage M.; ''Munc18-1 stabilizes syntaxin 1, but is not essential for syntaxin 1 targeting and SNARE complex formation.''; PubMedEurope PMCScholia
Toussaint JL, Geoffroy V, Schmitt M, Werner A, Garnier JM, Simoni P, Kempf J.; ''Human choline acetyltransferase (CHAT): partial gene sequence and potential control regions.''; PubMedEurope PMCScholia
Apparsundaram S, Ferguson SM, George AL, Blakely RD.; ''Molecular cloning of a human, hemicholinium-3-sensitive choline transporter.''; PubMedEurope PMCScholia
Becherer U, Rettig J.; ''Vesicle pools, docking, priming, and release.''; PubMedEurope PMCScholia
Schoch S, Gundelfinger ED.; ''Molecular organization of the presynaptic active zone.''; PubMedEurope PMCScholia
de Vrij W, Bulthuis RA, van Iwaarden PR, Konings WN.; ''Mechanism of L-glutamate transport in membrane vesicles from Bacillus stearothermophilus.''; PubMedEurope PMCScholia
Dulubova I, Khvotchev M, Liu S, Huryeva I, Südhof TC, Rizo J.; ''Munc18-1 binds directly to the neuronal SNARE complex.''; PubMedEurope PMCScholia
Rilstone JJ, Alkhater RA, Minassian BA.; ''Brain dopamine-serotonin vesicular transport disease and its treatment.''; PubMedEurope PMCScholia
Erickson JD, Varoqui H, Schäfer MK, Modi W, Diebler MF, Weihe E, Rand J, Eiden LE, Bonner TI, Usdin TB.; ''Functional identification of a vesicular acetylcholine transporter and its expression from a "cholinergic" gene locus.''; PubMedEurope PMCScholia
Chaudhry FA, Schmitz D, Reimer RJ, Larsson P, Gray AT, Nicoll R, Kavanaugh M, Edwards RH.; ''Glutamine uptake by neurons: interaction of protons with system a transporters.''; PubMedEurope PMCScholia
Takamori S, Rhee JS, Rosenmund C, Jahn R.; ''Identification of a vesicular glutamate transporter that defines a glutamatergic phenotype in neurons.''; PubMedEurope PMCScholia
Glutamate synaptic vesicle contains Rab3 ( GTPase), synaptobrevin/VAMP ( V-SNARE), VGLUT1 (Glutamate transporter) and synpatotagmin which is beleived to be a Ca2+ sensor and plays a role in the synaptic vesicle fusion process.
Acetylcholine synaptic vesicle contains Rab3 ( GTPase), synaptobrevin/VAMP ( V-SNARE), VGLUT1 (Glutamate transporter) and synpatotagmin which is beleived to be a Ca2+ sensor and plays a role in the synaptic vesicle fusion process.
GABA is a major inhibitory neurotransmitter in the mammalian central nervous system. GABA modulates neuronal excitability throughout the nervous system. Disruption of GABA neurotransmission leads to many neurological diseases including epilepsy and a general anxiety disorder. GABA is synthesized by two distinct enzymes GAD67 and GAD65 that differ in their cellular localization, functional properties and co-factor requirements. GABA synthesized by GAD65 is used for neurotransmission whereas GABA synthesized by GAD67 is used for processes other than neurotransmission such as synaptogenesis and protection against neuronal injury. GABA is loaded into synaptic vesicle with the help of vesicular inhibitory amino acid transporter or VGAT. GAD65 and VGAT are functionally linked at the synaptic vesicle membrane and GABA synthesized by GAD65 is preferentially loaded into the synaptic vesicle over GABA synthesized in cytoplasm by GAD67.The GABA loaded synaptic vesicles are docked at the plasma membrane with the help of the SNARE complexes and primed by interplay between various proteins including Munc18, complexin etc. Release of GABA loaded synaptic vesicle is initiated by the arrival of action potential at the presynaptic bouton and opening of N or P/Q voltage gated Ca2+ channels. Ca2+ influx results in Ca2+ binding by synaptobrevin, which is a part of the SNARE complex that also includes SNAP25 and syntaxin, leading to synaptic vesicle fusion. Release of GABA in the synaptic cleft leads to binding of GABA by the GABA receptors and post ligand binding events.
Rab3A, located in the synaptic vesicle membrane, interacts with RIM ( Rab3A interacting Molecule) and with Doc2. These interactions are beleived to initiate the process of priming which precedes the fuison of the synaptic vesicle with the plasma membrane.
Rab3A, located in the synaptic vesicle membrane, interacts with RIM ( Rab3A interacting Molecule) and with Doc2. These interactions are beleived to initiate the process of priming which precedes the fuison of the synaptic vesicle with the plasma membrane.
Rab3A, located in the synaptic vesicle membrane, interacts with RIM ( Rab3A interacting Molecule) and with Doc2. These interactions are beleived to initiate the process of priming which precedes the fuison of the synaptic vesicle with the plasma membrane.
This CandidateSet contains sequences identified by William Pearson's analysis of Reactome catalyst entities. Catalyst entity sequences were used to identify analagous sequences that shared overall homology and active site homology. Sequences in this Candidate set were identified in an April 24, 2012 analysis.
Munc 18 interacts with syntaxin in the plasma membrane, with Mint (Munc 18 interacting) which in turn interacts with CASK and neurexins. Munc18 also interacts with granulophilin. Granulophilin is interacts simultaneously with syntaxin and Munc18. These interactions are believed to be involved in the docking of the synaptic vesicle to the plasma membrane. However, the sequence of events is unclear.
Munc 18 interacts with syntaxin in the plasma membrane, with Mint (Munc 18 interacting) which in turn interacts with CASK and neurexins. Munc18 also interacts with granulophilin. Granulophilin is interacts simultaneously with syntaxin and Munc18. These interactions are believed to be involved in the docking of the synaptic vesicle to the plasma membrane. However, the sequence of events is unclear.
Quality Tags
Ontology Terms
Bibliography
History
External references
DataNodes
Loaded Synaptic
Vesicleloaded synaptic
vesicleloaded Synaptic
Vesicleloaded synaptic
vesicleloaded synaptic
vesiclerelease, reuptake
and degradationAnnotated Interactions
Loaded Synaptic
VesicleLoaded Synaptic
VesicleLoaded Synaptic
Vesicleloaded synaptic
vesicleloaded synaptic
vesicleloaded synaptic
vesicleloaded Synaptic
Vesicleloaded Synaptic
Vesicleloaded Synaptic
Vesicleloaded synaptic
vesicleloaded synaptic
vesicleloaded synaptic
vesicleloaded synaptic
vesicleloaded synaptic
vesicleloaded synaptic
vesicle