Familial hyperlipidemia type 3 (WP5110)

Homo sapiens

Familial hyperlipidemias are classified according to the Fredrickson classification. Type III is also known is familial dysbetalipoproteinemia. It is mainly linked to an increase of IDL. This is caused by APOE. APOE has multiple types, and is part of LDL, IDL, VLDL and chylomicrons. APOE also binds to LDLR, which is required for normal catabolism of triglycerid-rich proteins. Specifically APOE2 is linked with to IDL and because of this, mutations in APOE2 will lead to dysbetalipoproteinemia.

Authors

Ulas Babayigit , Friederike Ehrhart , and Eric Weitz

Activity

last edited

Discuss this pathway

Check for ongoing discussions or start your own.

Cited In

Are you planning to include this pathway in your next publication? See How to Cite and add a link here to your paper once it's online.

Organisms

Homo sapiens

Communities

Rare Diseases

Annotations

Disease Ontology

hyperlipoproteinemia type III familial hyperlipidemia

Cell Type Ontology

hepatocyte

Pathway Ontology

disease pathway

Participants

Label Type Compact URI Comment
VLDL Metabolite chebi:39027
Cholesterol Metabolite chebi:16113
HDL Metabolite chebi:47775
LDL Metabolite chebi:47774
Lipoprotein Metabolite chebi:6495
IDL Metabolite chebi:132933
Triglyceride Metabolite chebi:17855
Phospholipid Metabolite chebi:16247
VLDLR GeneProduct ensembl:ENSG00000147852
APOA2 GeneProduct ensembl:ENSG00000158874
APOA4 GeneProduct ensembl:ENSG00000110244
APOE GeneProduct ensembl:ENSG00000130203
CETP GeneProduct ensembl:ENSG00000087237
LIPC GeneProduct ensembl:ENSG00000166035
APOA1 GeneProduct ensembl:ENSG00000118137
SCARB1 GeneProduct ensembl:ENSG00000073060
LCAT GeneProduct ensembl:ENSG00000213398
LPL GeneProduct ensembl:ENSG00000175445
LDLR GeneProduct ensembl:ENSG00000130164
PLTP GeneProduct ensembl:ENSG00000100979
LRP1 GeneProduct ensembl:ENSG00000123384

References

  1. The role of scavenger receptor class B type I (SR-BI) in lipid trafficking. defining the rules for lipid traders. Rhainds D, Brissette L. Int J Biochem Cell Biol. 2004 Jan;36(1):39–77. PubMed Europe PMC Scholia
  2. Low-density lipoprotein receptor (LDLR) family orchestrates cholesterol homeostasis. Go GW, Mani A. Yale J Biol Med. 2012 Mar;85(1):19–28. PubMed Europe PMC Scholia
  3. Cholesteryl ester transfer protein inhibitors for dyslipidemia: focus on dalcetrapib. Goldberg AS, Hegele RA. Drug Des Devel Ther. 2012;6:251–9. PubMed Europe PMC Scholia
  4. Association of CETP and LIPC Gene Polymorphisms with HDL and LDL Sub-fraction Levels in a Group of Indian Subjects: A Cross-Sectional Study. Todur SP, Ashavaid TF. Indian J Clin Biochem. 2013 Apr;28(2):116–23. PubMed Europe PMC Scholia
  5. Apolipoprotein E isoforms and lipoprotein metabolism. Phillips MC. IUBMB Life. 2014 Sep;66(9):616–23. PubMed Europe PMC Scholia
  6. Introduction to Lipids and Lipoproteins. Feingold KR. In: Feingold KR, Anawalt B, Blackman MR, Boyce A, Chrousos G, Corpas E, et al., editors. Endotext. South Dartmouth (MA): MDText.com, Inc.; 2021. PubMed Europe PMC Scholia
  7. APOE genotype and stress response - a mini review. Dose J, Huebbe P, Nebel A, Rimbach G. Lipids Health Dis. 2016 Jul 25;15:121. PubMed Europe PMC Scholia
  8. Familial dysbetalipoproteinemia: an underdiagnosed lipid disorder. Koopal C, Marais AD, Visseren FLJ. Curr Opin Endocrinol Diabetes Obes. 2017 Apr;24(2):133–9. PubMed Europe PMC Scholia
  9. High-density lipoprotein metabolism and reverse cholesterol transport: strategies for raising HDL cholesterol. Tosheska Trajkovska K, Topuzovska S. Anatol J Cardiol. 2017 Aug;18(2):149–54. PubMed Europe PMC Scholia
  10. SCARB1 Gene Polymorphisms and HDL Subfractions in Coronary Artery Disease. Ayhan H, Gormus U, Isbir S, Yilmaz SG, Isbir T. In Vivo. 2017;31(5):873–6. PubMed Europe PMC Scholia
  11. Macrophage VLDLR mediates obesity-induced insulin resistance with adipose tissue inflammation. Shin KC, Hwang I, Choe SS, Park J, Ji Y, Kim JI, et al. Nat Commun. 2017 Oct 20;8(1):1087. PubMed Europe PMC Scholia
  12. Apolipoprotein C-II: New findings related to genetics, biochemistry, and role in triglyceride metabolism. Wolska A, Dunbar RL, Freeman LA, Ueda M, Amar MJ, Sviridov DO, et al. Atherosclerosis. 2017 Dec;267:49–60. PubMed Europe PMC Scholia
  13. N-terminal mutation of apoA-I and interaction with ABCA1 reveal mechanisms of nascent HDL biogenesis. Liu M, Mei X, Herscovitz H, Atkinson D. J Lipid Res. 2019 Jan;60(1):44–57. PubMed Europe PMC Scholia
  14. Genetic and secondary causes of severe HDL deficiency and cardiovascular disease. Geller AS, Polisecki EY, Diffenderfer MR, Asztalos BF, Karathanasis SK, Hegele RA, et al. J Lipid Res. 2018 Dec;59(12):2421–35. PubMed Europe PMC Scholia
  15. Identification of ApoA4 as a sphingosine 1-phosphate chaperone in ApoM- and albumin-deficient mice. Obinata H, Kuo A, Wada Y, Swendeman S, Liu CH, Blaho VA, et al. J Lipid Res. 2019 Nov;60(11):1912–21. PubMed Europe PMC Scholia
  16. Interleukin 10 promotes macrophage uptake of HDL and LDL by stimulating fluid-phase endocytosis. Lucero D, Islam P, Freeman LA, Jin X, Pryor M, Tang J, et al. Biochim Biophys Acta Mol Cell Biol Lipids. 2020 Feb;1865(2):158537. PubMed Europe PMC Scholia
  17. Association between the APOA2 rs3813627 Single Nucleotide Polymorphism and HDL and APOA1 Levels Through BMI. Boughanem H, Bandera-Merchán B, Hernández-Alonso P, Moreno-Morales N, Tinahones FJ, Lozano J, et al. Biomedicines. 2020 Feb 27;8(3):44. PubMed Europe PMC Scholia