Sudden Infant Death Syndrome (SIDS) Susceptibility Pathways (Homo sapiens)

From WikiPathways

Jump to: navigation, search


In this model, we provide an integrated view of Sudden Infant Death Syndrome (SIDS) at the level of implicated tissues, signaling networks and genetics. The purpose of this model is to serve as an overview of research in this field and recommend new candidates for more focused or genome wide analyses. SIDS is the sudden and unexpected death of an infant (less than 1 year of age), almost always during deep sleep, where no cause of death can be found by autopsy. Factors that mediate SIDS are likely to be both biological and behavioral, such as sleeping position, environment and stress during a critical phase of infant development ( While no clear diagnostic markers currently exist, several polymorphisms have been identified which are significantly over-represented in distinct SIDS ethnic population. The large majority of these polymorphisms exist in genes associated with neuronal signaling, cardiac contraction and inflammatory response. These and other lines of evidence suggest that SIDS has a strong autonomic nervous system component (PMID:12350301, PMID: 20124538). One of the neuronal nuclei most strongly implicated in SIDS has been the raphe nucleus of the brain stem. In this nuclei there are ultrastructural, cellular and molecular changes associated with SIDS relative to controls (PMID:19342987, PMID: 20124538). This region of the brain is responsible for the large majority of neuronal serotonin produced and is functionally important in the regulation of normal cardiopulmonary activity, sleep and thermoregulation (see associated references).

Genes associated with serotonin synthesis and receptivity have some of the strongest genetic association with SIDS. Principle among these genes the serotonin biosynthetic enzyme TPH2, the serotonin transporter SLC6A4 and the serotonin receptor HTR1A. SLC6A4 exhibits decreased expression in the raphe nucleus of the medulla oblongata and polymorphisms specifically associated with SIDS (PMID:19342987). In 75% of infants with SIDS, there is decreased HTR1A expression relative to controls along with an increase in the number of raphe serotonin neurons (PMID:19342987). Over-expression of the mouse orthologue of the HTR1A gene in the juvenile mouse medulla produces an analogous phenotype to SIDS with death due to bradycardia and hypothermia (PMID:18599790). These genes as well as those involved in serotonin synthesis are predicted to be transcriptionally regulated by a common factor, FEV (human orthologue of PET-1). PET-1 knock-out results in up to a 90% loss of serotonin neurons (PMID:12546819), while polymorphisms in FEV are over-represented in African American infants with SIDS. In addition to FEV, other transcription factors implicated in the regulation of these genes (Putative transcriptional regulators (TRs)) and FEV are also listed (see associated references). In addition to serotonin, vasopressin signaling and its regulation by serotonin appear to be important in a common pathway of cardiopulmonary regulation (PMID:2058745). A protein that associates with vasopressin signaling, named pituitary adenylate cyclase-activating polypeptide (ADCYAP1), results in a SIDS like phenotype, characterized by a high increase in spontaneous neonatal death, exacerbated by hypothermia and hypoxia (PMID:14608012), when disrupted in mice. Protein for this gene is widely distributed throughout the central nervous system (CNS), including autonomic control centers (PMID:12389210). ADCYAP1 and HTR1A are both predicted to be transcriptionally regulated by REST promoter binding. Regulation of G-protein coupled signaling pathways is illustrated for these genes, however, it is not clear whether ADCYAP1 acts directly upon raphe serotonin neurons.

Another potentially important class of receptors in SIDS is nicotine. Receptors for nicotine are expressed in serotonin neurons of the raphe throughout development (PMID:18986852). Application of nicotine or cigarette smoke is sufficient to inhibit electrical activity of raphe serotonin neurons (PMID:17515803) and chronic nicotine infusion in rats decreases expression of SLC6A4 (PMID:18778441). Furthermore, nicotine exposure reduces both HTR1A and HTR2A immunoreactivity in several nuclei of the brainstem (PMID:17451658).

In addition to CNS abnormalities, several studies have identified a critical link between cardiac arrhythmia (long QT syndrome) and SIDS (PMID:18928334). A number of genetic association studies identified functionally modifying mutations in critical cardiac channels in as many as 10% of all SIDS cases (PMID:18928334). These mutations have been predicted to predispose infants for long QT syndrome and sudden death. The highest proportion of SIDS associated mutations (both inherited and sporadic) is found in the sodium channel gene SCN5A. Examination of putative transcriptional regulators for these genes, highlights a diverse set of factors as well as a relatively common one (SP1).

Finally, several miscellaneous mutations have been identified in genes associated with inflammatory response and thermoregulation. Infection is considered a significant risk factor for SIDS (PMID:19114412). For inflammatory associated genes, such as TNF alpha, interleukin 10 and complement component 4, many of these mutations are only significant in the presence of infection and SIDS. In addition to these mutations, cerebrospinal fluid levels of IL6 are increased in SIDS cases as well as IL6R levels in the arcuate nucleus of the brain, another major site of serotonin synthesis (PMID:19396608). Genes such as ILR6 and ADCYAP1 are also associated with autoimmune disorders, thus SIDS may also be associated with autoinflammation of autonomic centers in the brain. Regulation of thermogenesis by brown adipose tissue has been proposed be an important component of SIDS, given that SIDS incidence is highest in the winter time and that animal models of SIDS demonstrate variation in body temperature. Interestingly, activation of raphe HTR1A decreases both shivering and peripheral vasoconstriction in piglets (18094064). Although a putative significant polymorphism was identified in the thermoregulator gene HSP60, this only occurred in one SIDS case. It is important to note that in the large majority of all these studies, sleeping position and smoking were among the most significant risk factors for SIDS.

In loving memory of Milo Salomonis (

Quality Tags

Ontology Terms



View all...
  1. Toliver-Kinsky T, Wood T, Perez-Polo JR; ''Nuclear factor kappaB/p49 is a negative regulatory factor in nerve growth factor-induced choline acetyltransferase promoter activity in PC12 cells.''; J Neurochem, 2000 PubMed
  2. Morley ME, Rand CM, Berry-Kravis EM, Zhou L, Fan W, Weese-Mayer DE; ''Genetic variation in the HTR1A gene and sudden infant death syndrome.''; Am J Med Genet A, 2008 PubMed
  3. Sullivan GM, Ogden RT, Oquendo MA, Kumar JS, Simpson N, Huang YY, Mann JJ, Parsey RV; ''Positron Emission Tomography Quantification of Serotonin-1A Receptor Binding in Medication-Free Bipolar Depression.''; Biol Psychiatry, 2009 PubMed
  4. Scott MM, Krueger KC, Deneris ES; ''A differentially autoregulated Pet-1 enhancer region is a critical target of the transcriptional cascade that governs serotonin neuron development.''; J Neurosci, 2005 PubMed
  5. Van Norstrand DW, Asimaki A, Rubinos C, Dolmatova E, Srinivas M, Tester DJ, Saffitz JE, Duffy HS, Ackerman MJ; ''Connexin43 mutation causes heterogeneous gap junction loss and sudden infant death.''; Circulation, 2012 PubMed
  6. Ferrante L, Opdal SH, Vege A, Rognum TO; ''IL-1 gene cluster polymorphisms and sudden infant death syndrome.''; Hum Immunol, 2010 PubMed
  7. Teerawatanasuk N, Carr LG; ''CBF/NF-Y activates transcription of the human tryptophan hydroxylase gene through an inverted CCAAT box.''; Brain Res Mol Brain Res, 1998 PubMed
  8. Cummings KJ, Klotz C, Liu WQ, Weese-Mayer DE, Marazita ML, Cooper ME, Berry-Kravis EM, Tobias R, Goldie C, Bech-Hansen NT, Wilson RJ; ''Sudden infant death syndrome (SIDS) in African Americans: polymorphisms in the gene encoding the stress peptide pituitary adenylate cyclase-activating polypeptide (PACAP).''; Acta Paediatr, 2009 PubMed
  9. Robert I, Sutter A, Quirin-Stricker C; ''Synergistic activation of the human choline acetyltransferase gene by c-Myb and C/EBPbeta.''; Brain Res Mol Brain Res, 2002 PubMed
  10. Narita N, Narita M, Takashima S, Nakayama M, Nagai T, Okado N; ''Serotonin transporter gene variation is a risk factor for sudden infant death syndrome in the Japanese population.''; Pediatrics, 2001 PubMed
  11. Goudet G, Delhalle S, Biemar F, Martial JA, Peers B; ''Functional and cooperative interactions between the homeodomain PDX1, Pbx, and Prep1 factors on the somatostatin promoter.''; J Biol Chem, 1999 PubMed
  12. Dergacheva O, Griffioen KJ, Wang X, Kamendi H, Gorini C, Mendelowitz D; ''5-HT(2) receptor subtypes mediate different long-term changes in GABAergic activity to parasympathetic cardiac vagal neurons in the nucleus ambiguus.''; Neuroscience, 2007 PubMed
  13. Patel PD, Bochar DA, Turner DL, Meng F, Mueller HM, Pontrello CG; ''Regulation of tryptophan hydroxylase-2 gene expression by a bipartite RE-1 silencer of transcription/neuron restrictive silencing factor (REST/NRSF) binding motif.''; J Biol Chem, 2007 PubMed
  14. Tester DJ, Tan BH, Medeiros-Domingo A, Song C, Makielski JC, Ackerman MJ; ''Loss-of-function mutations in the KCNJ8-encoded Kir6.1 K(ATP) channel and sudden infant death syndrome.''; Circ Cardiovasc Genet, 2011 PubMed
  15. Dashash M, Pravica V, Hutchinson IV, Barson AJ, Drucker DB; ''Association of sudden infant death syndrome with VEGF and IL-6 gene polymorphisms.''; Hum Immunol, 2006 PubMed
  16. Roberts J, Scott AC, Howard MR, Breen G, Bubb VJ, Klenova E, Quinn JP; ''Differential regulation of the serotonin transporter gene by lithium is mediated by transcription factors, CCCTC binding protein and Y-box binding protein 1, through the polymorphic intron 2 variable number tandem repeat.''; J Neurosci, 2007 PubMed
  17. Fukuchi M, Tabuchi A, Tsuda M; ''Transcriptional regulation of neuronal genes and its effect on neural functions: cumulative mRNA expression of PACAP and BDNF genes controlled by calcium and cAMP signals in neurons.''; J Pharmacol Sci, 2005 PubMed
  18. Tan BH, Pundi KN, Van Norstrand DW, Valdivia CR, Tester DJ, Medeiros-Domingo A, Makielski JC, Ackerman MJ; ''Sudden infant death syndrome-associated mutations in the sodium channel beta subunits.''; Heart Rhythm, 2010 PubMed
  19. Kim SM, Yang JW, Park MJ, Lee JK, Kim SU, Lee YS, Lee MA; ''Regulation of human tyrosine hydroxylase gene by neuron-restrictive silencer factor.''; Biochem Biophys Res Commun, 2006 PubMed
  20. Bhat KM, Maddodi N, Shashikant C, Setaluri V; ''Transcriptional regulation of human MAP2 gene in melanoma: role of neuronal bHLH factors and Notch1 signaling.''; Nucleic Acids Res, 2006 PubMed
  21. Duncan JR, Garland M, Myers MM, Fifer WP, Yang M, Kinney HC, Stark RI; ''Prenatal nicotine-exposure alters fetal autonomic activity and medullary neurotransmitter receptors: implications for sudden infant death syndrome.''; J Appl Physiol, 2009 PubMed
  22. Pérgola PE, Alper RH; ''Vasopressin and autonomic mechanisms mediate cardiovascular actions of central serotonin.''; Am J Physiol, 1991 PubMed
  23. Lin H, Xiao J, Luo X, Wang H, Gao H, Yang B, Wang Z; ''Overexpression HERG K(+) channel gene mediates cell-growth signals on activation of oncoproteins SP1 and NF-kappaB and inactivation of tumor suppressor Nkx3.1.''; J Cell Physiol, 2007 PubMed
  24. ''''; , PubMed
  25. Forsyth L, Hume R, Howatson A, Busuttil A, Burchell A; ''Identification of novel polymorphisms in the glucokinase and glucose-6-phosphatase genes in infants who died suddenly and unexpectedly.''; J Mol Med (Berl), 2005 PubMed
  26. Nagamoto-Combs K, Piech KM, Best JA, Sun B, Tank AW; ''Tyrosine hydroxylase gene promoter activity is regulated by both cyclic AMP-responsive element and AP1 sites following calcium influx. Evidence for cyclic amp-responsive element binding protein-independent regulation.''; J Biol Chem, 1997 PubMed
  27. Sawaguchi T, Patricia F, Kadhim H, Groswasser J, Sottiaux M, Nishida H, Kahn A; ''The correlation between microtubule-associated protein 2 in the brainstem of SIDS victims and physiological data on sleep apnea.''; Early Hum Dev, 2003 PubMed
  28. Opdal SH, Vege A, Stave AK, Rognum TO; ''The complement component C4 in sudden infant death.''; Eur J Pediatr, 1999 PubMed
  29. Queiroz-Leite GD, Peruzzetto MC, Neri EA, Rebouças NA; ''Transcriptional regulation of the Na�/H� exchanger NHE3 by chronic exposure to angiotensin II in renal epithelial cells.''; Biochem Biophys Res Commun, 2011 PubMed
  30. Ferrante L, Opdal SH, Vege A, Rognum TO; ''TNF-alpha promoter polymorphisms in sudden infant death.''; Hum Immunol, 2008 PubMed
  31. Raynal JF, Dugast C, Le Van Thaï A, Weber MJ; ''Winged helix hepatocyte nuclear factor 3 and POU-domain protein brn-2/N-oct-3 bind overlapping sites on the neuronal promoter of human aromatic L-amino acid decarboxylase gene.''; Brain Res Mol Brain Res, 1998 PubMed
  32. Noh KM, Hwang JY, Follenzi A, Athanasiadou R, Miyawaki T, Greally JM, Bennett MV, Zukin RS; ''Repressor element-1 silencing transcription factor (REST)-dependent epigenetic remodeling is critical to ischemia-induced neuronal death.''; Proc Natl Acad Sci U S A, 2012 PubMed
  33. Kelly TJ, Souza AL, Clish CB, Puigserver P; ''A hypoxia-induced positive feedback loop promotes hypoxia-inducible factor 1alpha stability through miR-210 suppression of glycerol-3-phosphate dehydrogenase 1-like.''; Mol Cell Biol, 2011 PubMed
  34. Inoue A, Ohnishi M, Fukutomi C, Kanoh M, Miyauchi M, Takata T, Tsuchiya D, Nishio H; ''Protein Kinase A-Dependent Substance P Expression by Pituitary Adenylate Cyclase-Activating Polypeptide in Rat Sensory Neuronal Cell Line ND7/23 Cells.''; J Mol Neurosci, 2012 PubMed
  35. Wiemann M, Frede S, Tschentscher F, Kiwull-Schöne H, Kiwull P, Bingmann D, Brinkmann B, Bajanowski T; ''NHE3 in the human brainstem: implication for the pathogenesis of the sudden infant death syndrome (SIDS)?''; Adv Exp Med Biol, 2008 PubMed
  36. Hendricks T, Francis N, Fyodorov D, Deneris ES; ''The ETS domain factor Pet-1 is an early and precise marker of central serotonin neurons and interacts with a conserved element in serotonergic genes.''; J Neurosci, 1999 PubMed
  37. Ou XM, Chen K, Shih JC; ''Glucocorticoid and androgen activation of monoamine oxidase A is regulated differently by R1 and Sp1.''; J Biol Chem, 2006 PubMed
  38. Czesak M, Lemonde S, Peterson EA, Rogaeva A, Albert PR; ''Cell-specific repressor or enhancer activities of Deaf-1 at a serotonin 1A receptor gene polymorphism.''; J Neurosci, 2006 PubMed
  39. Shang LL, Sanyal S, Pfahnl AE, Jiao Z, Allen J, Liu H, Dudley SC Jr; ''NF-kappaB-dependent transcriptional regulation of the cardiac scn5a sodium channel by angiotensin II.''; Am J Physiol Cell Physiol, 2008 PubMed
  40. Weese-Mayer DE, Berry-Kravis EM, Zhou L, Maher BS, Curran ME, Silvestri JM, Marazita ML; ''Sudden infant death syndrome: case-control frequency differences at genes pertinent to early autonomic nervous system embryologic development.''; Pediatr Res, 2004 PubMed
  41. Lavezzi AM, Ottaviani G, Matturri L; ''Role of somatostatin and apoptosis in breathing control in sudden perinatal and infant unexplained death.''; Clin Neuropathol, 2004 PubMed
  42. Player A, Wang Y, Bhattacharya B, Rao M, Puri RK, Kawasaki ES; ''Comparisons between transcriptional regulation and RNA expression in human embryonic stem cell lines.''; Stem Cells Dev, 2006 PubMed
  43. Cummings KJ, Klotz C, Liu WQ, Weese-Mayer DE, Marazita ML, Cooper ME, Berry-Kravis EM, Tobias R, Goldie C, Bech-Hansen NT, Wilson RJ; ''Sudden infant death syndrome (SIDS) in African Americans: polymorphisms in the gene encoding the stress peptide pituitary adenylate cyclase-activating polypeptide (PACAP).''; Acta Paediatr, 2009 PubMed
  44. Bai G, Hoffman PW; ''Transcriptional Regulation of NMDA Receptor Expression''; , 2009 PubMed
  45. Cheng J, Van Norstrand DW, Medeiros-Domingo A, Valdivia C, Tan BH, Ye B, Kroboth S, Vatta M, Tester DJ, January CT, Makielski JC, Ackerman MJ; ''Alpha1-syntrophin mutations identified in sudden infant death syndrome cause an increase in late cardiac sodium current.''; Circ Arrhythm Electrophysiol, 2009 PubMed
  46. Ferrante L, Opdal SH, Vege A, Rognum TO; ''Cytokine gene polymorphisms and sudden infant death syndrome.''; Acta Paediatr, 2009 PubMed
  47. Dawson SJ, Yoon SO, Chikaraishi DM, Lillycrop KA, Latchman DS; ''The Oct-2 transcription factor represses tyrosine hydroxylase expression via a heptamer TAATGARAT-like motif in the gene promoter.''; Nucleic Acids Res, 1994 PubMed
  48. Rand CM, Weese-Mayer DE, Zhou L, Maher BS, Cooper ME, Marazita ML, Berry-Kravis EM; ''Sudden infant death syndrome: Case-control frequency differences in paired like homeobox (PHOX) 2B gene.''; Am J Med Genet A, 2006 PubMed
  49. Rognum IJ, Haynes RL, Vege A, Yang M, Rognum TO, Kinney HC; ''Interleukin-6 and the serotonergic system of the medulla oblongata in the sudden infant death syndrome.''; Acta Neuropathol, 2009 PubMed
  50. Sepramaniam S, Ying LK, Armugam A, Wintour EM, Jeyaseelan K; ''MicroRNA-130a represses transcriptional activity of aquaporin 4 M1 promoter.''; J Biol Chem, 2012 PubMed
  51. Lau P, Nixon SJ, Parton RG, Muscat GE; ''RORalpha regulates the expression of genes involved in lipid homeostasis in skeletal muscle cells: caveolin-3 and CPT-1 are direct targets of ROR.''; J Biol Chem, 2004 PubMed
  52. Donner N, Handa RJ; ''Estrogen receptor beta regulates the expression of tryptophan-hydroxylase 2 mRNA within serotonergic neurons of the rat dorsal raphe nuclei.''; Neuroscience, 2009 PubMed
  53. Adams ME, Dwyer TM, Dowler LL, White RA, Froehner SC; ''Mouse alpha 1- and beta 2-syntrophin gene structure, chromosome localization, and homology with a discs large domain.''; J Biol Chem, 1995 PubMed
  54. Duncan JR, Paterson DS, Hoffman JM, Mokler DJ, Borenstein NS, Belliveau RA, Krous HF, Haas EA, Stanley C, Nattie EE, Trachtenberg FL, Kinney HC; ''Brainstem serotonergic deficiency in sudden infant death syndrome.''; JAMA, 2010 PubMed
  55. Broadbelt KG, Rivera KD, Paterson DS, Duncan JR, Trachtenberg FL, Paulo JA, Stapels MD, Borenstein NS, Belliveau RA, Haas EA, Stanley C, Krous HF, Steen H, Kinney HC; ''Brainstem deficiency of the 14-3-3 regulator of serotonin synthesis: a proteomics analysis in the sudden infant death syndrome.''; Mol Cell Proteomics, 2012 PubMed
  56. Lavezzi AM, Casale V, Oneda R, Weese-Mayer DE, Matturri L; ''Sudden Infant Death Syndrome and Sudden Intrauterine Unexplained Death: Correlation Between Hypoplasia of raphé Nuclei and Serotonin Transporter Gene Promoter Polymorphism.''; Pediatr Res, 2009 PubMed
  57. Valdivia CR, Ueda K, Ackerman MJ, Makielski JC; ''GPD1L links redox state to cardiac excitability by PKC-dependent phosphorylation of the sodium channel SCN5A.''; Am J Physiol Heart Circ Physiol, 2009 PubMed
  58. Livolsi A, Niederhoffer N, Dali-Youcef N, Rambaud C, Olexa C, Mokni W, Gies JP, Bousquet P; ''Cardiac muscarinic receptor overexpression in sudden infant death syndrome.''; PLoS One, 2010 PubMed
  59. Cummings KJ, Commons KG, Fan KC, Li A, Nattie EE; ''Severe spontaneous bradycardia associated with respiratory disruptions in rat pups with fewer brainstem 5-HT neurons.''; Am J Physiol Regul Integr Comp Physiol, 2009 PubMed
  60. Brown JW, Sirlin EA, Benoit AM, Hoffman JM, Darnall RA; ''Activation of 5-HT1A receptors in medullary raphé disrupts sleep and decreases shivering during cooling in the conscious piglet.''; Am J Physiol Regul Integr Comp Physiol, 2008 PubMed
  61. Poetsch M, Czerwinski M, Wingenfeld L, Vennemann M, Bajanowski T; ''A common FMO3 polymorphism may amplify the effect of nicotine exposure in sudden infant death syndrome (SIDS).''; Int J Legal Med, 2010 PubMed
  62. Weese-Mayer DE, Berry-Kravis EM, Maher BS, Silvestri JM, Curran ME, Marazita ML; ''Sudden infant death syndrome: association with a promoter polymorphism of the serotonin transporter gene.''; Am J Med Genet A, 2003 PubMed
  63. Highet AR, Gibson CS, Goldwater PN; ''Variant interleukin 1 receptor antagonist gene alleles in sudden infant death syndrome.''; Arch Dis Child, 2010 PubMed
  64. Echetebu CO, Ali M, Izban MG, MacKay L, Garfield RE; ''Localization of regulatory protein binding sites in the proximal region of human myometrial connexin 43 gene.''; Mol Hum Reprod, 1999 PubMed
  65. Lemonde S, Rogaeva A, Albert PR; ''Cell type-dependent recruitment of trichostatin A-sensitive repression of the human 5-HT1A receptor gene.''; J Neurochem, 2004 PubMed
  66. Dugast-Darzacq C, Egloff S, Weber MJ; ''Cooperative dimerization of the POU domain protein Brn-2 on a new motif activates the neuronal promoter of the human aromatic L-amino acid decarboxylase gene.''; Brain Res Mol Brain Res, 2004 PubMed
  67. Jiang X, Tian F, Du Y, Copeland NG, Jenkins NA, Tessarollo L, Wu X, Pan H, Hu XZ, Xu K, Kenney H, Egan SE, Turley H, Harris AL, Marini AM, Lipsky RH; ''BHLHB2 controls Bdnf promoter 4 activity and neuronal excitability.''; J Neurosci, 2008 PubMed
  68. Filonzi L, Magnani C, Lavezzi AM, Rindi G, Parmigiani S, Bevilacqua G, Matturri L, Nonnis Marzano F; ''Association of dopamine transporter and monoamine oxidase molecular polymorphisms with sudden infant death syndrome and stillbirth: new insights into the serotonin hypothesis.''; Neurogenetics, 2009 PubMed
  69. Derry C, Benjamin C, Bladin P, le Bars D, Tochon-Danguy H, Berkovic SF, Zimmer L, Costes N, Mulligan R, Reutens D; ''Increased serotonin receptor availability in human sleep: evidence from an [18F]MPPF PET study in narcolepsy.''; Neuroimage, 2006 PubMed
  70. Machaalani R, Waters KA; ''NMDA receptor 1 expression in the brainstem of human infants and its relevance to the sudden infant death syndrome (SIDS).''; J Neuropathol Exp Neurol, 2003 PubMed
  71. Tian F, Hu XZ, Wu X, Jiang H, Pan H, Marini AM, Lipsky RH; ''Dynamic chromatin remodeling events in hippocampal neurons are associated with NMDA receptor-mediated activation of Bdnf gene promoter 1.''; J Neurochem, 2009 PubMed
  72. Baudry A, Mouillet-Richard S, Schneider B, Launay JM, Kellermann O; ''miR-16 targets the serotonin transporter: a new facet for adaptive responses to antidepressants.''; Science, 2010 PubMed
  73. Aizawa S, Teramoto K, Yamamuro Y; ''Histone deacetylase 9 as a negative regulator for choline acetyltransferase gene in NG108-15 neuronal cells.''; Neuroscience, 2012 PubMed
  74. Rand CM, Berry-Kravis EM, Fan W, Weese-Mayer DE; ''HTR2A variation and sudden infant death syndrome: a case-control analysis.''; Acta Paediatr, 2009 PubMed
  75. Fukuchi M, Fujii H, Takachi H, Ichinose H, Kuwana Y, Tabuchi A, Tsuda M; ''Activation of tyrosine hydroxylase (TH) gene transcription induced by brain-derived neurotrophic factor (BDNF) and its selective inhibition through Ca(2+) signals evoked via the N-methyl-D-aspartate (NMDA) receptor.''; Brain Res, 2010 PubMed
  76. Klintschar M, Reichenpfader B, Saternus KS; ''A functional polymorphism in the tyrosine hydroxylase gene indicates a role of noradrenalinergic signaling in sudden infant death syndrome.''; J Pediatr, 2008 PubMed
  77. Puffenberger EG, Hu-Lince D, Parod JM, Craig DW, Dobrin SE, Conway AR, Donarum EA, Strauss KA, Dunckley T, Cardenas JF, Melmed KR, Wright CA, Liang W, Stafford P, Flynn CR, Morton DH, Stephan DA; ''Mapping of sudden infant death with dysgenesis of the testes syndrome (SIDDT) by a SNP genome scan and identification of TSPYL loss of function.''; Proc Natl Acad Sci U S A, 2004 PubMed
  78. Tester DJ, Ackerman M; ''Cardiomyopathic and Channelopathic Causes of Sudden, Unexpected Death in Infants and Children.''; Annu Rev Med, 2008 PubMed
  79. Yang Z, Lantz PE, Ibdah JA; ''''; , PubMed
  80. Orii KE, Aoyama T, Wakui K, Fukushima Y, Miyajima H, Yamaguchi S, Orii T, Kondo N, Hashimoto T; ''Genomic and mutational analysis of the mitochondrial trifunctional protein beta-subunit (HADHB) gene in patients with trifunctional protein deficiency.''; Hum Mol Genet, 1997 PubMed
  81. Hu Y, Lund IV, Gravielle MC, Farb DH, Brooks-Kayal AR, Russek SJ; ''Surface expression of GABAA receptors is transcriptionally controlled by the interplay of cAMP-response element-binding protein and its binding partner inducible cAMP early repressor.''; J Biol Chem, 2008 PubMed
  82. Mallard C, Tolcos M, Leditschke J, Campbell P, Rees S; ''Reduction in choline acetyltransferase immunoreactivity but not muscarinic-m2 receptor immunoreactivity in the brainstem of SIDS infants.''; J Neuropathol Exp Neurol, 1999 PubMed
  83. Broadbelt KG, Paterson DS, Belliveau RA, Trachtenberg FL, Haas EA, Stanley C, Krous HF, Kinney HC; ''Decreased GABAA receptor binding in the medullary serotonergic system in the sudden infant death syndrome.''; J Neuropathol Exp Neurol, 2011 PubMed
  84. Martens LK, Kirschner KM, Warnecke C, Scholz H; ''Hypoxia-inducible factor-1 (HIF-1) is a transcriptional activator of the TrkB neurotrophin receptor gene.''; J Biol Chem, 2007 PubMed
  85. Forsyth L, Scott HM, Howatson A, Busuttil A, Hume R, Burchell A; ''Genetic variation in hepatic glucose-6-phosphatase system genes in cases of sudden infant death syndrome.''; J Pathol, 2007 PubMed
  86. Xia X, Batra N, Shi Q, Bonewald LF, Sprague E, Jiang JX; ''Prostaglandin promotion of osteocyte gap junction function through transcriptional regulation of connexin 43 by glycogen synthase kinase 3/beta-catenin signaling.''; Mol Cell Biol, 2010 PubMed
  87. Klintschar M, Heimbold C; ''Association between a functional polymorphism in the MAOA gene and sudden infant death syndrome.''; Pediatrics, 2012 PubMed
  88. Sudhakar C, Jain N, Swarup G; ''Sp1-like sequences mediate human caspase-3 promoter activation by p73 and cisplatin.''; FEBS J, 2008 PubMed
  89. Ferrante L, Opdal SH, Vege A, Rognum T; ''Cytokine gene polymorphisms and sudden infant death syndrome.''; Acta Paediatr, 2010 PubMed
  90. Inoue K, Ito K, Osato M, Lee B, Bae SC, Ito Y; ''The transcription factor Runx3 represses the neurotrophin receptor TrkB during lineage commitment of dorsal root ganglion neurons.''; J Biol Chem, 2007 PubMed
  91. Maddodi N, Bhat KM, Devi S, Zhang SC, Setaluri V; ''Oncogenic BRAFV600E induces expression of neuronal differentiation marker MAP2 in melanoma cells by promoter demethylation and down-regulation of transcription repressor HES1.''; J Biol Chem, 2010 PubMed
  92. Dergacheva O, Kamendi H, Wang X, Pinol RM, Frank J, Jameson H, Gorini C, Mendelowitz D; ''The role of 5-HT3 and other excitatory receptors in central cardiorespiratory responses to hypoxia: implications for sudden infant death syndrome.''; Pediatr Res, 2009 PubMed
  93. Gronli JO, Santucci BA, Leurgans SE, Berry-Kravis EM, Weese-Mayer DE; ''Congenital central hypoventilation syndrome: PHOX2B genotype determines risk for sudden death.''; Pediatr Pulmonol, 2008 PubMed
  94. Schmitt M, Bausero P, Simoni P, Queuche D, Geoffroy V, Marschal C, Kempf J, Quirin-Stricker C; ''Positive and negative effects of nuclear receptors on transcription activation by AP-1 of the human choline acetyltransferase proximal promoter.''; J Neurosci Res, 1995 PubMed
  95. Paterson DS, Trachtenberg FL, Thompson EG, Belliveau RA, Beggs AH, Darnall R, Chadwick AE, Krous HF, Kinney HC; ''''; , PubMed
  96. Nishida K, Otsu K, Hori M, Kuzuya T, Tada M; ''Cloning and characterization of the 5'-upstream regulatory region of the Ca(2+)-release channel gene of cardiac sarcoplasmic reticulum.''; Eur J Biochem, 1996 PubMed
  97. Hauge Opdal S, Melien Ø, Rootwelt H, Vege A, Arnestad M, Ole Rognum T; ''The G protein beta3 subunit 825C allele is associated with sudden infant death due to infection.''; Acta Paediatr, 2006 PubMed
  98. Osawa M, Kimura R, Hasegawa I, Mukasa N, Satoh F; ''SNP association and sequence analysis of the NOS1AP gene in SIDS.''; Leg Med (Tokyo), 2009 PubMed
  99. Umenishi F, Verkman AS; ''Isolation and functional analysis of alternative promoters in the human aquaporin-4 water channel gene.''; Genomics, 1998 PubMed
  100. Tester DJ, Dura M, Carturan E, Reiken S, Wronska A, Marks AR, Ackerman MJ; ''A mechanism for sudden infant death syndrome (SIDS): stress-induced leak via ryanodine receptors.''; Heart Rhythm, 2007 PubMed
  101. Gessner BD, Gillingham MB, Birch S, Wood T, Koeller DM; ''Evidence for an association between infant mortality and a carnitine palmitoyltransferase 1A genetic variant.''; Pediatrics, 2010 PubMed
  102. Kingsbury TJ, Krueger BK; ''Ca2+, CREB and krüppel: a novel KLF7-binding element conserved in mouse and human TRKB promoters is required for CREB-dependent transcription.''; Mol Cell Neurosci, 2007 PubMed
  103. Alenina N, Bashammakh S, Bader M; ''Specification and differentiation of serotonergic neurons.''; Stem Cell Rev, 2006 PubMed
  104. Luo X, Xiao J, Lin H, Lu Y, Yang B, Wang Z; ''Genomic structure, transcriptional control, and tissue distribution of HERG1 and KCNQ1 genes.''; Am J Physiol Heart Circ Physiol, 2008 PubMed
  105. Galehdari H, Pooryasin A, Foroughmand A, Daneshmand S, Saadat M; ''Association between the G1001C polymorphism in the GRIN1 gene promoter and schizophrenia in the Iranian population.''; J Mol Neurosci, 2009 PubMed
  106. Opdal SH, Vege A, Stray-Pedersen A, Rognum TO; ''Aquaporin-4 gene variation and sudden infant death syndrome.''; Pediatr Res, 2010 PubMed
  107. Le François B, Czesak M, Steubl D, Albert PR; ''Transcriptional regulation at a HTR1A polymorphism associated with mental illness.''; Neuropharmacology, 2008 PubMed
  108. Van Hoecke M, Prigent-Tessier AS, Garnier PE, Bertrand NM, Filomenko R, Bettaieb A, Marie C, Beley AG; ''Evidence of HIF-1 functional binding activity to caspase-3 promoter after photothrombotic cerebral ischemia.''; Mol Cell Neurosci, 2007 PubMed
  109. Machaalani R, Waters KA; ''Neuronal cell death in the Sudden Infant Death Syndrome brainstem and associations with risk factors.''; Brain, 2008 PubMed
  110. Rahim RA, Boyd PA, Ainslie Patrick WJ, Burdon RH; ''Human heat shock protein gene polymorphisms and sudden infant death syndrome.''; Arch Dis Child, 1996 PubMed
  111. Greco SJ, Smirnov SV, Murthy RG, Rameshwar P; ''Synergy between the RE-1 silencer of transcription and NFkappaB in the repression of the neurotransmitter gene TAC1 in human mesenchymal stem cells.''; J Biol Chem, 2007 PubMed
  112. Perskvist N, Skoglund K, Edston E, Bäckström G, Lodestad I, Palm U; ''TNF-alpha and IL-10 gene polymorphisms versus cardioimmunological responses in sudden infant death.''; Fetal Pediatr Pathol, 2008 PubMed
  113. Semba J, Wakuta M; ''Chronic effect of nicotine on serotonin transporter mRNA in the raphe nucleus of rats: reversal by co-administration of bupropion.''; Psychiatry Clin Neurosci, 2008 PubMed
  114. Poetsch M, Nottebaum BJ, Wingenfeld L, Frede S, Vennemann M, Bajanowski T; ''Impact of Sodium/Proton Exchanger 3 Gene Variants on Sudden Infant Death Syndrome.''; J Pediatr, 2009 PubMed
  115. Rand CM, Berry-Kravis EM, Zhou L, Fan W, Weese-Mayer DE; ''Sudden infant death syndrome: rare mutation in the serotonin system FEV gene.''; Pediatr Res, 2007 PubMed
  116. Cargnin F, Flora A, Di Lascio S, Battaglioli E, Longhi R, Clementi F, Fornasari D; ''PHOX2B regulates its own expression by a transcriptional auto-regulatory mechanism.''; J Biol Chem, 2005 PubMed
  117. Miyata A, Sugawara H, Iwata S, Shimizu T, Kangawa K; ''[The regulatory mechanism for neuron specific expression of PACAP gene]''; Nippon Yakurigaku Zasshi, 2004 PubMed
  118. Pombo PM, Barettino D, Espliguero G, Metsis M, Iglesias T, Rodriguez-Pena A; ''Transcriptional repression of neurotrophin receptor trkB by thyroid hormone in the developing rat brain.''; J Biol Chem, 2000 PubMed
  119. Cummings KJ, Pendlebury JD, Sherwood NM, Wilson RJ; ''Sudden neonatal death in PACAP-deficient mice is associated with reduced respiratory chemoresponse and susceptibility to apnoea.''; J Physiol, 2004 PubMed
  120. Winge I, McKinney JA, Ying M, D'Santos CS, Kleppe R, Knappskog PM, Haavik J; ''Activation and stabilization of human tryptophan hydroxylase 2 by phosphorylation and 14-3-3 binding.''; Biochem J, 2008 PubMed
  121. Scheuch K, Lautenschlager M, Grohmann M, Stahlberg S, Kirchheiner J, Zill P, Heinz A, Walther DJ, Priller J; ''Characterization of a functional promoter polymorphism of the human tryptophan hydroxylase 2 gene in serotonergic raphe neurons.''; Biol Psychiatry, 2007 PubMed
  122. Machaalani R, Say M, Waters KA; ''Effects of cigarette smoke exposure on nicotinic acetylcholine receptor subunits α7 and β2 in the sudden infant death syndrome (SIDS) brainstem.''; Toxicol Appl Pharmacol, 2011 PubMed
  123. Gallego J, Dauger S; ''PHOX2B mutations and ventilatory control.''; Respir Physiol Neurobiol, 2008 PubMed
  124. Pedraza N, Rafel M, Navarro I, Encinas M, Aldea M, Gallego C; ''Mixed lineage kinase phosphorylates transcription factor E47 and inhibits TrkB expression to link neuronal death and survival pathways.''; J Biol Chem, 2009 PubMed
  125. Côté F, Schussler N, Boularand S, Peirotes A, Thévenot E, Mallet J, Vodjdani G; ''Involvement of NF-Y and Sp1 in basal and cAMP-stimulated transcriptional activation of the tryptophan hydroxylase (TPH ) gene in the pineal gland.''; J Neurochem, 2002 PubMed


View all...
92921view11:36, 17 July 2017EgonwReplaced a CAS of a salt with that of the parent compound.
86078view09:59, 29 June 2016MirellaKalafatiModified title
80056view09:31, 3 May 2015LarsEijssenCorrected spelling error: serotinergic -> serotonergic
78533view10:30, 7 January 2015MaintBotadded missing graphIds
74443view07:26, 20 April 2014EgonwFixed a PubMed ID.
73552view18:27, 30 January 2014EgonwH2O not H20....
70114view19:12, 12 July 2013MaintBotupdated to 2013 schema
68050view12:25, 29 June 2013EgonwFixed a few identifier issues.
68049view12:21, 29 June 2013EgonwFixed char encoding issues in references.
67641view11:43, 26 June 2013DdiglesOntology Term : 'serotonin signaling pathway' added !
59166view18:29, 22 February 2013MaintBotUpdated Ensembl data source
55364view18:39, 13 December 2012NsalomonisPeriodical save, work in progress
55358view18:18, 13 December 2012NsalomonisSpecify description
55355view18:08, 13 December 2012NsalomonisPeriodical save, work in progress
55354view17:58, 13 December 2012NsalomonisPeriodical save, work in progress
55353view17:47, 13 December 2012NsalomonisPeriodical save, work in progress
55352view17:32, 13 December 2012NsalomonisSpecify description
52941view21:29, 24 October 2012NsalomonisSpecify description
52817view01:50, 23 October 2012NsalomonisSpecify description
52816view00:16, 23 October 2012Nsalomonistest-without-DNA
52726view03:39, 20 October 2012NsalomonisSpecify description
52723view03:12, 20 October 2012NsalomonisSpecify description
52722view03:02, 20 October 2012NsalomonisSpecify description
52721view00:57, 20 October 2012NsalomonisSpecify description
52720view00:55, 20 October 2012NsalomonisSpecify description
52719view00:32, 20 October 2012NsalomonisSpecify description
52718view00:20, 20 October 2012NsalomonisSpecify description
52715view23:35, 19 October 2012NsalomonisSpecify description
52714view23:29, 19 October 2012NsalomonisSpecify description
52713view23:27, 19 October 2012NsalomonisSpecify description
52712view23:25, 19 October 2012NsalomonisSpecify description
52711view23:23, 19 October 2012NsalomonisSpecify description
52710view22:21, 19 October 2012NsalomonisSpecify description
52709view22:15, 19 October 2012NsalomonisPeriodical save, work in progress
52708view22:05, 19 October 2012NsalomonisPeriodical save, work in progress
52707view21:55, 19 October 2012NsalomonisPeriodical save, work in progress
52706view21:53, 19 October 2012NsalomonisSpecify description
52705view21:41, 19 October 2012NsalomonisSpecify description
52704view21:34, 19 October 2012NsalomonisPeriodical save, work in progress
52703view21:27, 19 October 2012NsalomonisSpecify description
52702view21:24, 19 October 2012NsalomonisPeriodical save, work in progress
52701view21:19, 19 October 2012NsalomonisSpecify description
52700view21:13, 19 October 2012NsalomonisPeriodical save, work in progress
52699view20:51, 19 October 2012NsalomonisPeriodical save, work in progress
52698view20:37, 19 October 2012NsalomonisPeriodical save, work in progress
52697view20:27, 19 October 2012NsalomonisPeriodical save, work in progress
52696view20:20, 19 October 2012NsalomonisSpecify description
52659view00:30, 19 October 2012NsalomonisSpecify description
52658view00:30, 19 October 2012NsalomonisPeriodical save, work in progress
52657view00:19, 19 October 2012NsalomonisPeriodical save, work in progress

External references


View all...
NameTypeDatabase referenceComment
5-HIAAMetaboliteHMDB00763 (HMDB)
5-HTMetaboliteHMDB00259 (HMDB)
5-HTPMetaboliteHMDB00472 (HMDB)
ACADMGeneProduct34 (Entrez Gene)
ADCYAP1GeneProduct116 (Entrez Gene)
ADCYAP1R1GeneProduct117 (Entrez Gene)
ALDOAGeneProductENSG00000149925 (Ensembl)
AQP4GeneProductENSG00000171885 (Ensembl)
ARGeneProduct367 (Entrez Gene)
ASCL1GeneProduct429 (Entrez Gene)
ATP1A3GeneProductENSG00000105409 (Ensembl)
AVPGeneProduct551 (Entrez Gene)
AcetylcholineMetabolite51-84-3 (CAS)
BDNFGeneProductENSG00000176697 (Ensembl)
BHLHE40GeneProductENSG00000134107 (Ensembl)
C4AGeneProduct720 (Entrez Gene)
C4BGeneProduct721 (Entrez Gene)
CASP3GeneProductENSG00000164305 (Ensembl)
CAV3GeneProduct859 (Entrez Gene)
CC2D1AGeneProduct54862 (Entrez Gene)
CDCA7LGeneProduct55536 (Entrez Gene)
CEBPBGeneProductENSG00000172216 (Ensembl)
CHATGeneProductENSG00000070748 (Ensembl)
CHRM2GeneProduct1129 (Entrez Gene)
CHRNA4GeneProduct1137 (Entrez Gene)
CHRNA7GeneProductENSG00000175344 (Ensembl)
CHRNB2GeneProduct1141 (Entrez Gene)
CHRNB4GeneProduct1143 (Entrez Gene)
CPT1AGeneProductENSG00000110090 (Ensembl)
CREB1GeneProduct1385 (Entrez Gene)
CREB1GeneProductENSG00000118260 (Ensembl)
CREBBPGeneProductENSG00000005339 (Ensembl)
CREMGeneProductENSG00000095794 (Ensembl)
CTCFGeneProduct10664 (Entrez Gene)
CTNNB1GeneProductENSG00000168036 (Ensembl)
CholineMetabolite62-49-7 (CAS)
DDCGeneProduct1644 (Entrez Gene)
DEAF1GeneProduct10522 (Entrez Gene)
DLX2GeneProductENSG00000115844 (Ensembl)
DopamineMetabolite62-31-7 (CAS)
ECE1GeneProduct1889 (Entrez Gene)
EGR1GeneProductENSG00000120738 (Ensembl)
EN1GeneProduct2019 (Entrez Gene)
EP300GeneProduct2033 (Entrez Gene)
ESR2GeneProduct2100 (Entrez Gene)
FEVGeneProduct54738 (Entrez Gene)
FMO3GeneProductENSG00000007933 (Ensembl)
FOXM1GeneProduct2305 (Entrez Gene)
FluoxetineMetabolite54910-89-3 (CAS)
G6PCGeneProductENSG00000131482 (Ensembl)
GABAMetaboliteHMDB00112 (HMDB)
GABRA1GeneProduct2554 (Entrez Gene)
GAPDHGeneProductENSG00000111640 (Ensembl)
GATA2GeneProduct2624 (Entrez Gene)
GATA3GeneProduct2625 (Entrez Gene)
GCKGeneProductENSG00000106633 (Ensembl)
GJA1GeneProductENSG00000152661 (Ensembl)
GNB3GeneProduct2784 (Entrez Gene)
GPD1LGeneProductENSG00000152642 (Ensembl)
GRIN1GeneProductENSG00000176884 (Ensembl)
Glial Cell DifferentiationPathwayWP2276 (WikiPathways)
GlutamateMetaboliteHMDB04135 (HMDB)
HADHAGeneProduct3030 (Entrez Gene)
HADHBGeneProductENSG00000138029 (Ensembl)
HDAC1GeneProductENSG00000116478 (Ensembl)
HDAC9GeneProductENSG00000048052 (Ensembl)
HES1GeneProduct3280 (Entrez Gene)
HES1GeneProductENSG00000114315 (Ensembl)
HES5GeneProduct388585 (Entrez Gene)
HIF1AGeneProductENSG00000100644 (Ensembl)
HSP90B1GeneProductENSG00000166598 (Ensembl)
HSPD1GeneProduct3329 (Entrez Gene)
HTR1AGeneProduct3350 (Entrez Gene)
HTR2AGeneProduct3356 (Entrez Gene)
HTR3AGeneProductENSG00000166736 (Ensembl)
IL10GeneProduct3586 (Entrez Gene)
IL13GeneProductENSG00000169194 (Ensembl)
IL1AGeneProductENSG00000115008 (Ensembl)
IL1BGeneProductENSG00000125538 (Ensembl)
IL1RNGeneProductENSG00000136689 (Ensembl)
IL6GeneProduct3569 (Entrez Gene)
IL6RGeneProduct3570 (Entrez Gene)
IL8GeneProduct3576 (Entrez Gene)
JUNGeneProductENSG00000177606 (Ensembl)
KCNH2 GeneProduct3757 (Entrez Gene)
KCNH2GeneProduct3757 (Entrez Gene)
KCNJ8GeneProduct3764 (Entrez Gene)
KCNQ1GeneProduct3784 (Entrez Gene)
L-DOPAMetabolite59-92-7 (CAS)
L-TryptophanMetaboliteHMDB00929 (HMDB)
LMX1BGeneProduct4010 (Entrez Gene)
MAOAGeneProduct4128 (Entrez Gene)
MAP2GeneProductENSG00000078018 (Ensembl)
MAZGeneProductENSG00000103495 (Ensembl)
MBD1GeneProductENSG00000141644 (Ensembl)
MECP2GeneProductENSG00000169057 (Ensembl)
MEF2CGeneProductENSG00000081189 (Ensembl)
MIR13AGeneProductENSG00000208009 (Ensembl)
MIR16-1GeneProduct406950 (Entrez Gene)
MIR210GeneProductENSG00000199038 (Ensembl)
MYBGeneProductENSG00000118513 (Ensembl)
NANOGGeneProductENSG00000111704 (Ensembl)
NEUROD1GeneProductENSG00000162992 (Ensembl)
NFKB1GeneProduct4790 (Entrez Gene)
NFKB1GeneProductENSG00000109320 (Ensembl)
NFKB2GeneProductENSG00000077150 (Ensembl)
NFYAGeneProduct4800 (Entrez Gene)
NGFGeneProductENSG00000134259 (Ensembl)
NKX2-2GeneProduct4821 (Entrez Gene)
NKX3-1GeneProduct4824 (Entrez Gene)
NOS1APGeneProductENSG00000198929 (Ensembl)
NR3C1GeneProduct2908 (Entrez Gene)
NR3C1GeneProductENSG00000113580 (Ensembl)
NTRK2GeneProduct4915 (Entrez Gene)
NicotineMetaboliteHMDB01934 (HMDB)
PAHGeneProduct5053 (Entrez Gene)
PBX1GeneProductENSG00000185630 (Ensembl)
PHOX2AGeneProduct401 (Entrez Gene)
PHOX2BGeneProduct8929 (Entrez Gene)
PKNOX1GeneProductENSG00000160199 (Ensembl)
PLP1GeneProductENSG00000123560 (Ensembl)
POU2F2GeneProductENSG00000028277 (Ensembl)
POU3F2GeneProduct5454 (Entrez Gene)
POU5F1GeneProductENSG00000204531 (Ensembl)
PPARGC1AGeneProduct10891 (Entrez Gene)
PPARGC1BGeneProduct133522 (Entrez Gene)
PRKACAGeneProduct5566 (Entrez Gene)
PRKACBGeneProduct5567 (Entrez Gene)
PRKAR1AGeneProduct5573 (Entrez Gene) KAP0 HUMAN
PRKAR1BGeneProduct5575 (Entrez Gene)
PRKAR2AGeneProduct5576 (Entrez Gene)
PRKAR2BGeneProduct5577 (Entrez Gene)
PhenylalanineMetabolite63-91-2 (CAS)
RESTGeneProduct5978 (Entrez Gene)
RESTGeneProductENSG00000084093 (Ensembl)
RETGeneProduct5979 (Entrez Gene)
RORAGeneProduct6095 (Entrez Gene)
RUNX3GeneProductENSG00000020633 (Ensembl)
RYR2GeneProduct6262 (Entrez Gene)
SCN3BGeneProductENSG00000166257 (Ensembl)
SCN4BGeneProductENSG00000177098 (Ensembl)
SCN5AGeneProduct6331 (Entrez Gene)
SLC1A3GeneProductENSG00000079215 (Ensembl)
SLC25A4GeneProductENSG00000151729 (Ensembl)
SLC6A4GeneProduct6532 (Entrez Gene) Contains an alternative promoter in the first and possibly second intron.
SLC9A3GeneProduct6550 (Entrez Gene)
SNAP25GeneProductENSG00000132639 (Ensembl)
SNTA1GeneProduct6640 (Entrez Gene)
SOX2GeneProductENSG00000181449 (Ensembl)
SP1GeneProduct6667 (Entrez Gene)
SP1GeneProductENSG00000185591 (Ensembl)
SP3GeneProductENSG00000172845 (Ensembl)
SPTBN1GeneProductENSG00000115306 (Ensembl)
SSTGeneProductENSG00000157005 (Ensembl)
SSTR1GeneProductENSG00000139874 (Ensembl)
SSTR2GeneProductENSG00000180616 (Ensembl)
TAC1GeneProductENSG00000006128 (Ensembl)
TACR1GeneProductENSG00000115353 (Ensembl)
TCF3GeneProductENSG00000071564 (Ensembl)
TFGeneProductENSG00000091513 (Ensembl)
THGeneProductENSG00000180176 (Ensembl)
THRBGeneProductENSG00000151090 (Ensembl)
TLX3GeneProduct30012 (Entrez Gene)
TNFGeneProduct7124 (Entrez Gene)
TP73GeneProductENSG00000078900 (Ensembl)
TPH1GeneProduct7166 (Entrez Gene)
TPH2GeneProduct121278 (Entrez Gene)
TPPPGeneProductENSG00000171368 (Ensembl)
TSPYL1GeneProductENSG00000189241 (Ensembl)
TyrosineMetabolite60-18-4 (CAS)
VAMP2GeneProductENSG00000220205 (Ensembl)
VEGFAGeneProductENSG00000112715 (Ensembl)
VIPR1GeneProduct7433 (Entrez Gene)
VIPR2GeneProduct7434 (Entrez Gene)
YBX1GeneProduct4904 (Entrez Gene)
YWHABGeneProduct7529 (Entrez Gene)
YWHAEGeneProduct7531 (Entrez Gene)
YWHAGGeneProduct7532 (Entrez Gene)
YWHAGGeneProductENSG00000170027 (Ensembl)
YWHAHGeneProduct7533 (Entrez Gene)
YWHAQGeneProduct10971 (Entrez Gene)
YWHAZGeneProduct7534 (Entrez Gene) PMID: 9861170 PMID: 1317796

Annotated Interactions

No annotated interactions

Personal tools